2024 Volume 14 Issue 4
Article Contents

Ying Chen, Lihong Huang, Jiafu Wang. GLOBAL ASYMPTOTICAL STABILITY FOR A FISHERY MODEL WITH SEASONAL HARVESTING[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2196-2206. doi: 10.11948/20230354
Citation: Ying Chen, Lihong Huang, Jiafu Wang. GLOBAL ASYMPTOTICAL STABILITY FOR A FISHERY MODEL WITH SEASONAL HARVESTING[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2196-2206. doi: 10.11948/20230354

GLOBAL ASYMPTOTICAL STABILITY FOR A FISHERY MODEL WITH SEASONAL HARVESTING

  • Author Bio: Email: chenying12020@163.com(Y. Chen); Email: jfwangmath@163.com(J. Wang)
  • Corresponding author: Email: lhhuang@csust.edu.cn(L. Huang) 
  • Fund Project: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12171056, 12271063) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30698)
  • A new fishery model is proposed by using the strategy of seasonal harvesting. Sufficient and necessary conditions are established to ensure the existence of a unique equilibrium or a periodic solution by the approach of Poincaré maps. It is shown that the equilibrium or the periodic solution is globally asymptotically stable. Numerical examples are provided to demonstrate the model dynamics and some biological implications are given as well.

    MSC: 34A36, 37C55
  • 加载中
  • [1] P. M. Allen and J. M. McGlade, Dynamics of discovery and exploitation: The case of the scotian shelf groundfish fisheries, Can. J. Fish. Aquat. Sci., 1986, 43(6), 1187–1200. doi: 10.1139/f86-148

    CrossRef Google Scholar

    [2] R. Chinnathambi and F. Rihan, Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia, Math. Biosci. Eng., 2022, 19(11), 11154–11171. doi: 10.3934/mbe.2022520

    CrossRef Google Scholar

    [3] R. Cristiano, M. Henao and D. Pagano, Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions and two predators competing for one prey, J. Math. Anal. Appl., 2023, 522(2), 126998. doi: 10.1016/j.jmaa.2023.126998

    CrossRef Google Scholar

    [4] A. F. Filippov, Differential Equations with Discontinuous Right-hand Sides, Kluwer Academic Publishers, 1988.

    Google Scholar

    [5] E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 2012, 11(1), 181–211. doi: 10.1137/11083928X

    CrossRef Google Scholar

    [6] M. Guardia, T. Seara and M. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Diff. Eqs., 2011, 250(4), 1967–2023. doi: 10.1016/j.jde.2010.11.016

    CrossRef Google Scholar

    [7] Z. Guo and X. Zou, Impact of discontinuous harvesting on fishery dynamics in a stock-effort fishing model, Commun. Nonlinear Sci. Numer. Simul., 2015, 20(2), 594–603. doi: 10.1016/j.cnsns.2014.06.014

    CrossRef Google Scholar

    [8] J. He and K. Wang, The survival analysis for a single-species population model in a polluted environment, Appl. Math. Model., 2007, 31(10), 2227–2238. doi: 10.1016/j.apm.2006.08.017

    CrossRef Google Scholar

    [9] D. Hu, Y. Zhang, Z. Zheng and M. Liu, Dynamics of a delayed predator-prey model with constant-yield prey harvesting, J. Appl. Anal. Comput., 2022, 12(1), 302–335.

    Google Scholar

    [10] L. Huang, Z. Guo and J. Wang, Theory and Applications of Differential Equtions with Discontinuous Right Hand Sides, Science Press, Beijing, 2011.

    Google Scholar

    [11] L. Huang and J. Wang, Models Described by Differential Equtions with Discontinuous Right Hand Sides and Their Dynamics, Science Press, Beijing, 2021.

    Google Scholar

    [12] Y. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 2003, 13(8), 2157–2188. doi: 10.1142/S0218127403007874

    CrossRef Google Scholar

    [13] W. Li, J. Ji and L. Huang, Global dynamic behavior of a predator–prey model under ratio-dependent state impulsive control, Appl. Math. Model., 2020, 77, 1842–1859. doi: 10.1016/j.apm.2019.09.033

    CrossRef Google Scholar

    [14] J. Liang, Y. Zhu, C. Xiang and S. Tang, Travelling waves and paradoxical effects in a discrete-time growth-dispersal model, Appl. Math. Model., 2018, 59, 132–146. doi: 10.1016/j.apm.2018.01.039

    CrossRef Google Scholar

    [15] P. Liu, J. Shi and Y. Wang, Periodic solutions of a logistic type population model with harvesting, J. Math. Anal. Appl., 2010, 369(2), 730–735. doi: 10.1016/j.jmaa.2010.04.027

    CrossRef Google Scholar

    [16] S. Liu and M. Han, Limit cycle bifurcations near double homoclinic and double heteroclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 2023, 175, 113970. doi: 10.1016/j.chaos.2023.113970

    CrossRef Google Scholar

    [17] Y. Liu, J. Yu and J. Li, Global dynamics of a competitive system with seasonal succession and different harvesting strategies, J. Diff. Eqs., 2024, 382, 211–245. doi: 10.1016/j.jde.2023.11.024

    CrossRef Google Scholar

    [18] M. Schaefer, Some aspects of the dynamics of populations important to the management of the commercial marine fisheries, Bull. Math. Biol., 1991, 53(1–2), 253–279. doi: 10.1016/S0092-8240(05)80049-7

    CrossRef Google Scholar

    [19] J. Suh, H. Kwon and J. Lee, A model of Plasmodium vivax malaria with delays: Mathematical analysis and numerical simulations, Math. Comput. Simul., 2024, 217, 169–187. doi: 10.1016/j.matcom.2023.10.009

    CrossRef Google Scholar

    [20] G. Tang, S. Tang and R. A. Cheke, Global analysis of a Holling type Ⅱ predator–prey model with a constant prey refuge, Nonlinear Dynam., 2014, 76(1), 635–647. doi: 10.1007/s11071-013-1157-4

    CrossRef Google Scholar

    [21] S. Tang and L. Chen, The effect of seasonal harvesting on stage-structured population models, J. Math. Biol., 2004, 48(4), 357–374. doi: 10.1007/s00285-003-0243-5

    CrossRef Google Scholar

    [22] S. Tang, J. Liang, Y. Xiao and R. A. Cheke, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 2012, 72(4), 1061–1080. doi: 10.1137/110847020

    CrossRef Google Scholar

    [23] J. Wang, S. He and L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Internat. J. Bifur. Chaos, 2020, 30(11), 2050160. doi: 10.1142/S0218127420501606

    CrossRef Google Scholar

    [24] J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle–focus type, Nonlinear Anal. Hybrid Syst., 2019, 33, 162–178. doi: 10.1016/j.nahs.2019.03.004

    CrossRef Google Scholar

    [25] J. Wang and L. Huang, Limit cycles bifurcated from a focus-fold singularity in general piecewise smooth planar systems, J. Diff. Eqs., 2021, 304, 491–519. doi: 10.1016/j.jde.2021.10.006

    CrossRef Google Scholar

    [26] J. Wang, F. Zhang and L. Wang, Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model, Nonlinear Anal, Real World Appl., 2016, 31, 308–324. doi: 10.1016/j.nonrwa.2016.01.017

    CrossRef Google Scholar

    [27] D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(2), 699–719.

    Google Scholar

    [28] J. Yang, S. Tang and R. A. Cheke, Global stability and sliding bifurcations of a non-smooth Gause predator–prey system, Appl. Math. Comput., 2013, 224, 9–20.

    Google Scholar

    [29] J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Eqs., 2020, 269(7), 6193–6215. doi: 10.1016/j.jde.2020.04.036

    CrossRef Google Scholar

    [30] J. Yu and J. Li, Adelay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 2022, 84(3), 1–19.

    Google Scholar

    [31] Z. Zhang and B. Zheng, Dynamics of a mosquito population suppression model with a saturated Wolbachia release rate, Appl. Math. Lett., 2022, 129, 107933. doi: 10.1016/j.aml.2022.107933

    CrossRef Google Scholar

    [32] T. Zhao and Y. Xiao, Non-smooth plant disease models with economic thresholds, Math. Biosci., 2013, 241(1), 34–48. doi: 10.1016/j.mbs.2012.09.005

    CrossRef Google Scholar

    [33] B. Zheng, J. Yu and J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 2021, 81(2), 718–740. doi: 10.1137/20M1368367

    CrossRef Google Scholar

    [34] Z. Zhu, X. Feng and L. Hu, Global dynamics of a mosquito population suppression model under a periodic release strategy, J. Appl. Anal. Comput., 2023, 13(4), 2297–2314.

    Google Scholar

Figures(2)

Article Metrics

Article views(1276) PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint