2024 Volume 14 Issue 4
Article Contents

Wenwen Zhang, Yanxin Lei, Pingrun Li. THE SOLVABILITY OF SOME KINDS OF SINGULAR INTEGRAL EQUATIONS OF CONVOLUTION TYPE WITH VARIABLE INTEGRAL LIMITS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2207-2227. doi: 10.11948/20230358
Citation: Wenwen Zhang, Yanxin Lei, Pingrun Li. THE SOLVABILITY OF SOME KINDS OF SINGULAR INTEGRAL EQUATIONS OF CONVOLUTION TYPE WITH VARIABLE INTEGRAL LIMITS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2207-2227. doi: 10.11948/20230358

THE SOLVABILITY OF SOME KINDS OF SINGULAR INTEGRAL EQUATIONS OF CONVOLUTION TYPE WITH VARIABLE INTEGRAL LIMITS

  • In this paper, we discuss several classes of convolution type singular integral equations with variable integral limits in class $ H^*_1 $. By means of the theory of complex analysis, Fourier analysis and integral transforms, we can transform singular integral equations with variable integral limits into the Riemann boundary value problems with discontinuous coefficients. Under the solvability conditions, the existence and uniqueness of the general solutions can be obtained. Further, we analyze the asymptotic properties of the solutions at the nodes. Our work improves the Noether theory of singular integral equations and boundary value problems, and develops the knowledge architecture of complex analysis.

    MSC: 45E10, 30E25, 45E05
  • 加载中
  • [1] Z. Blocki, Suita conjecyure and the Ohsawa-Takegoshi extension theorem, Invent. Math., 2013, 193, 149–158. doi: 10.1007/s00222-012-0423-2

    CrossRef Google Scholar

    [2] Y. Chen and Z. Guo, Generalized singular integral with rough kernel and approximation of surface quasi-geostrophic equation, J. Diff. Eqs., 2023, 346, 205–228. doi: 10.1016/j.jde.2022.11.035

    CrossRef Google Scholar

    [3] J. Colliander, M. Keel and G. Staffilani, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2

    CrossRef Google Scholar

    [4] M. C. De-Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391–1410.

    Google Scholar

    [5] H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Comput., 2008, 384(1), 308–314.

    Google Scholar

    [6] Z. Du and J. Du, On direct method of solution for a class of singular integral equations, Acta Math. Sci., 2007, 27, 301–307. doi: 10.1016/S0252-9602(07)60030-7

    CrossRef Google Scholar

    [7] Z. Du and J. Li, Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation, J. Diff. Eqs., 2022, 306, 418–438. doi: 10.1016/j.jde.2021.10.033

    CrossRef Google Scholar

    [8] R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108

    CrossRef Google Scholar

    [9] R. V. Duduchava, General singular integral equations and fundamental problems of the plane theory of elasticity, Trudy Tbiliss. Math. Inst. Razmadze, 1986, 82, 45–89.

    Google Scholar

    [10] F. D. Gakhov, The Boundary Value Problem of Analysis Function, Nauka Press, Moscow, 1977.

    Google Scholar

    [11] F. D. Gakhov, Boundary Value Problems, New York, 1990.

    Google Scholar

    [12] F. D. Gakhov and U. I. Chersky, Integral Equations of Convolution type, Nauka, Moscow, 1987.

    Google Scholar

    [13] Y. Gong, L. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [14] B. Guo, N. Liu and Y. Wang, Long-time asymptotics for the Hirota equation on the half-line, Nonlinear Anal., 2018, 174, 118–140. doi: 10.1016/j.na.2018.04.004

    CrossRef Google Scholar

    [15] L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Reprint of the second (1990) edition, Springer-Verlag, Berlin, 2003.

    Google Scholar

    [16] Y. Jiang and Y. Xu, Fast Fourier–Galerkin methods for solving singular boundary integral equations: Numerical integration and precondition, J. Comput. Appl. Math., 2010, 234, 2792–2807. doi: 10.1016/j.cam.2010.01.022

    CrossRef Google Scholar

    [17] R. Katani and S. McKee, Numerical solution of two-dimensional weakly singular Volterra integral equations with non-smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779. doi: 10.1016/j.cam.2021.113779

    CrossRef Google Scholar

    [18] H. Khosravi, R. Allahyari and A. Haghighi, Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on $L.{p}(\mathbb{R}_+)$, Appl. Math. Comput., 2015, 260, 140–147.

    $L.{p}(\mathbb{R}_+)$" target="_blank">Google Scholar

    [19] D. Kinzebulatov and K. R. Madou, Stochastic equations with time-dependent singular drift, J. Diff. Eqs., 2022, 337, 255–293. doi: 10.1016/j.jde.2022.07.042

    CrossRef Google Scholar

    [20] D. Kong, S. Xiang and H. Wu, An efficient numerical method for Volterra integral equation of the second kind with a weakly singular kernel, J. Comput. Appl. Math., 2023, 427, 115101. doi: 10.1016/j.cam.2023.115101

    CrossRef Google Scholar

    [21] P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721

    CrossRef Google Scholar

    [22] P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631–2643. doi: 10.1002/mma.5538

    CrossRef Google Scholar

    [23] P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601.

    Google Scholar

    [24] P. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta Applicandae Mathematicae, 2022, 181(1).

    Google Scholar

    [25] P. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 2020, 10(6), 2756–2766.

    Google Scholar

    [26] P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643

    CrossRef Google Scholar

    [27] P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185–194.

    Google Scholar

    [28] P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Diff. Eqs., 2018, 265, 5455–5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [29] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publisers, London, 2004.

    Google Scholar

    [30] J. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004.

    Google Scholar

    [31] J. Lu, On method of solution for some classes of singular integral equations with convolution, Chin. Ann. of Math., 1987, 8(1), 97–108.

    Google Scholar

    [32] J. Lu, Some classes boundary value problems and singular integral equations with a transformation, Advances in Mathematics, 1994, 23(5), 424–431.

    Google Scholar

    [33] J. Lu, On solution of a kind of Riemann boundary value problem with square roots, Acta Math. Sci., 2002, 22(2), 145–149. doi: 10.1016/S0252-9602(17)30466-6

    CrossRef Google Scholar

    [34] S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqs., 2007, 237, 259–277. doi: 10.1016/j.jde.2007.03.014

    CrossRef Google Scholar

    [35] C. Miao, J. Zhang and J. Zheng, Scattering theory for the radial $\dot{H}.{\frac{1}{2}}$-critical wave equation with a cubic convolution, J. Diff. Eqs., 2015, 259, 7199–7237. doi: 10.1016/j.jde.2015.08.020

    CrossRef $\dot{H}.{\frac{1}{2}}$-critical wave equation with a cubic convolution" target="_blank">Google Scholar

    [36] N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

    Google Scholar

    [37] N. M. Tuan and N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712–718. doi: 10.1016/j.jmaa.2010.04.019

    CrossRef Google Scholar

    [38] T. Wang, S. Liu and Z. Zhang, Singular expansions and collocation methods for generalized Abel integral equations, J. Comput. Appl. Math., 2023, 429, 115240. doi: 10.1016/j.cam.2023.115240

    CrossRef Google Scholar

    [39] Y. Wang and J. Du, On Riemann boundary value problem for polyanalytic functions on the real axis, Acta. Math. Sci., 2004, 24(4), 663–671. doi: 10.1016/S0252-9602(17)30251-5

    CrossRef Google Scholar

    [40] P. Wöjcik, M. A. Sheshko and S. M. Sheshko, Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Differential Equations, 2013, 49(2), 198–209. doi: 10.1134/S0012266113020067

    CrossRef Google Scholar

    [41] I. Zamanpour and R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 2023, 419, 114704. doi: 10.1016/j.cam.2022.114704

    CrossRef Google Scholar

    [42] S. Zhong, The growth in time of higher Sobolev norms of solutions to Schrdinger equations on compact Riemannian manifolds, J. Diff. Eqs., 2008, 245(2), 359–376. doi: 10.1016/j.jde.2008.03.008

    CrossRef Google Scholar

Article Metrics

Article views(1101) PDF downloads(336) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint