Citation: | Wenwen Zhang, Yanxin Lei, Pingrun Li. THE SOLVABILITY OF SOME KINDS OF SINGULAR INTEGRAL EQUATIONS OF CONVOLUTION TYPE WITH VARIABLE INTEGRAL LIMITS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2207-2227. doi: 10.11948/20230358 |
In this paper, we discuss several classes of convolution type singular integral equations with variable integral limits in class $ H^*_1 $. By means of the theory of complex analysis, Fourier analysis and integral transforms, we can transform singular integral equations with variable integral limits into the Riemann boundary value problems with discontinuous coefficients. Under the solvability conditions, the existence and uniqueness of the general solutions can be obtained. Further, we analyze the asymptotic properties of the solutions at the nodes. Our work improves the Noether theory of singular integral equations and boundary value problems, and develops the knowledge architecture of complex analysis.
[1] | Z. Blocki, Suita conjecyure and the Ohsawa-Takegoshi extension theorem, Invent. Math., 2013, 193, 149–158. doi: 10.1007/s00222-012-0423-2 |
[2] | Y. Chen and Z. Guo, Generalized singular integral with rough kernel and approximation of surface quasi-geostrophic equation, J. Diff. Eqs., 2023, 346, 205–228. doi: 10.1016/j.jde.2022.11.035 |
[3] | J. Colliander, M. Keel and G. Staffilani, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2 |
[4] | M. C. De-Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391–1410. |
[5] | H. Du and J. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Comput., 2008, 384(1), 308–314. |
[6] | Z. Du and J. Du, On direct method of solution for a class of singular integral equations, Acta Math. Sci., 2007, 27, 301–307. doi: 10.1016/S0252-9602(07)60030-7 |
[7] | Z. Du and J. Li, Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation, J. Diff. Eqs., 2022, 306, 418–438. doi: 10.1016/j.jde.2021.10.033 |
[8] | R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–78. doi: 10.1002/mana.19770790108 |
[9] | R. V. Duduchava, General singular integral equations and fundamental problems of the plane theory of elasticity, Trudy Tbiliss. Math. Inst. Razmadze, 1986, 82, 45–89. |
[10] | F. D. Gakhov, The Boundary Value Problem of Analysis Function, Nauka Press, Moscow, 1977. |
[11] | F. D. Gakhov, Boundary Value Problems, New York, 1990. |
[12] | F. D. Gakhov and U. I. Chersky, Integral Equations of Convolution type, Nauka, Moscow, 1987. |
[13] | Y. Gong, L. Leong and T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435–444. doi: 10.1016/j.jmaa.2008.12.021 |
[14] | B. Guo, N. Liu and Y. Wang, Long-time asymptotics for the Hirota equation on the half-line, Nonlinear Anal., 2018, 174, 118–140. doi: 10.1016/j.na.2018.04.004 |
[15] | L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Reprint of the second (1990) edition, Springer-Verlag, Berlin, 2003. |
[16] | Y. Jiang and Y. Xu, Fast Fourier–Galerkin methods for solving singular boundary integral equations: Numerical integration and precondition, J. Comput. Appl. Math., 2010, 234, 2792–2807. doi: 10.1016/j.cam.2010.01.022 |
[17] | R. Katani and S. McKee, Numerical solution of two-dimensional weakly singular Volterra integral equations with non-smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779. doi: 10.1016/j.cam.2021.113779 |
[18] | H. Khosravi, R. Allahyari and A. Haghighi, Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on $L.{p}(\mathbb{R}_+)$, Appl. Math. Comput., 2015, 260, 140–147. |
[19] | D. Kinzebulatov and K. R. Madou, Stochastic equations with time-dependent singular drift, J. Diff. Eqs., 2022, 337, 255–293. doi: 10.1016/j.jde.2022.07.042 |
[20] | D. Kong, S. Xiang and H. Wu, An efficient numerical method for Volterra integral equation of the second kind with a weakly singular kernel, J. Comput. Appl. Math., 2023, 427, 115101. doi: 10.1016/j.cam.2023.115101 |
[21] | P. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038. doi: 10.1080/01630563.2019.1586721 |
[22] | P. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631–2643. doi: 10.1002/mma.5538 |
[23] | P. Li, Solvability theory of convolution singular integral equations via Riemann-Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601. |
[24] | P. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta Applicandae Mathematicae, 2022, 181(1). |
[25] | P. Li, Existence of solutions for dual singular integral equations with convolution kernels in case of non-normal type, J. Appl. Anal. Comput., 2020, 10(6), 2756–2766. |
[26] | P. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643 |
[27] | P. Li and G. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185–194. |
[28] | P. Li and G. Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Diff. Eqs., 2018, 265, 5455–5471. doi: 10.1016/j.jde.2018.07.056 |
[29] | G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publisers, London, 2004. |
[30] | J. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004. |
[31] | J. Lu, On method of solution for some classes of singular integral equations with convolution, Chin. Ann. of Math., 1987, 8(1), 97–108. |
[32] | J. Lu, Some classes boundary value problems and singular integral equations with a transformation, Advances in Mathematics, 1994, 23(5), 424–431. |
[33] | J. Lu, On solution of a kind of Riemann boundary value problem with square roots, Acta Math. Sci., 2002, 22(2), 145–149. doi: 10.1016/S0252-9602(17)30466-6 |
[34] | S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqs., 2007, 237, 259–277. doi: 10.1016/j.jde.2007.03.014 |
[35] |
C. Miao, J. Zhang and J. Zheng, Scattering theory for the radial $\dot{H}.{\frac{1}{2}}$-critical wave equation with a cubic convolution, J. Diff. Eqs., 2015, 259, 7199–7237. doi: 10.1016/j.jde.2015.08.020
CrossRef $\dot{H}.{\frac{1}{2}}$-critical wave equation with a cubic convolution" target="_blank">Google Scholar |
[36] | N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002. |
[37] | N. M. Tuan and N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712–718. doi: 10.1016/j.jmaa.2010.04.019 |
[38] | T. Wang, S. Liu and Z. Zhang, Singular expansions and collocation methods for generalized Abel integral equations, J. Comput. Appl. Math., 2023, 429, 115240. doi: 10.1016/j.cam.2023.115240 |
[39] | Y. Wang and J. Du, On Riemann boundary value problem for polyanalytic functions on the real axis, Acta. Math. Sci., 2004, 24(4), 663–671. doi: 10.1016/S0252-9602(17)30251-5 |
[40] | P. Wöjcik, M. A. Sheshko and S. M. Sheshko, Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Differential Equations, 2013, 49(2), 198–209. doi: 10.1134/S0012266113020067 |
[41] | I. Zamanpour and R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 2023, 419, 114704. doi: 10.1016/j.cam.2022.114704 |
[42] | S. Zhong, The growth in time of higher Sobolev norms of solutions to Schrdinger equations on compact Riemannian manifolds, J. Diff. Eqs., 2008, 245(2), 359–376. doi: 10.1016/j.jde.2008.03.008 |