Citation: | Serap Yalçın, Erbil Çetin, Fatma Serap Topal. EXISTENCE RESULTS FOR A NONLINEAR GENERALIZED CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3639-3656. doi: 10.11948/20230359 |
This study gives some new existence results for a three point boundary value problem involving a nonlinear fractional differential equation that incorporates a broad form of the Caputo fractional derivative concerning a new function. Our approach rests upon the fixed point theorems established by Banach, Schafer, and Schauder. Additionally, we substantiate the robustness of our findings by providing an apt illustrative example.
[1] | M. S. Abdo, A. G. Ibrahim and S. K. Panchal, Nonlinear implicit fractional differential equation involving ψ-Caputo fractional derivative, Proc. Jangjeon Math. Soc.(PJMS), 2019, 22(3), 387–400. |
[2] | M. S. Abdo and S. K. Panchal, Fractional integro-differential equations involving ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 2019, 11(2), 338–359. doi: 10.4208/aamm.OA-2018-0143 |
[3] | M. S. Abdo, S. K. Panchal and H. S. Hussien, Fractional integro-differential equations with nonlocal conditions and ψ-Hilfer fractional derivative, Mathematical Modelling and Analysis, 2019, 24, 564–584. doi: 10.3846/mma.2019.034 |
[4] | M. S. Abdo, S. K. Panchal and A. M. Saeed, Fractional boundary value problem with ψ-Caputo fractional derivative, Proc. Indian Acad. Sci. (Math. Sci.), 2019, 129(65), 64–78. |
[5] | O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Frac. Calc. Appl. Anal., 2012, 15, 700–711. doi: 10.2478/s13540-012-0047-7 |
[6] | R. Almeida, A Caputo fractional derivative of a function according to another function, Commun Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006 |
[7] | R. Almeida, A. B. Malinowska and M. T. Monteiro, Fractional differential equations with a Caputo derivative according to a Kernel function and their applications, Math. Method Appl. Sci., 2018, 41(1), 336–352. doi: 10.1002/mma.4617 |
[8] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922, 3, 133–181. doi: 10.4064/fm-3-1-133-181 |
[9] | N. Nyamoradi, Multiple positive solutions for fractional differential systems, Ann. Univ. Ferrara, 2012, 58(2), 359–369. doi: 10.1007/s11565-012-0155-7 |
[10] | H. Schaefer, Uber die Methode der a priori-Schranken, Math. Ann., 1955, 129, 415–441. doi: 10.1007/BF01362380 |
[11] | E. Shivanian, On the existence and uniqueness of the solution of a nonlinear fractional diferential equation with integral boundary condition, Journal of Nonlinear Mathematical Physics, 2023. DOI: 10.1007/s44198-023-00143-3. |
[12] | D. R. Smart, Fixed Point Theorems, 1980, Vol. 66, Cup Archive. |
[13] | A. Sun, Y. Su, Q. Yuan and T. Li, Existence of solutions to fractional differential equations with fractional-order derivative terms, J. Appl. Math. Comput. Mech., 2021, 11(1), 486–520. |
[14] | Y. Sun, Z. Zeng and J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Applied Mathematics, 2017, 8(3), 312–323. doi: 10.4236/am.2017.83026 |
[15] | J. Vanterler and E. C. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60(2), 72–91. |
[16] | S. Vong, Positive solutions of singular fractional differential equations with integral boundary conditions, Math. Comput. Model., 2013, 57(5–6), 1053–1059. doi: 10.1016/j.mcm.2012.06.024 |
[17] | H. A. Wahash, M. S. Abdo and S. K. Panchal, Existence and ulam-hyers stability of he implicit fractional boundary value problem with ψ-Caputo fractional derivative, J. Appl. Math. Comput. Mech., 2020, 19(1), 89–101. doi: 10.17512/jamcm.2020.1.08 |
[18] | H. A. Wahash, S. K. Panchal and M. S. Abdo, Existence and stability of a nonlinear fractional differential equation involving a ψ-Caputo operator, Adv. Theory Nonlinear Anal. Appl., 2020, 4(4), 266–278. |
[19] | G. Wang and T. Wang, On nonlinear Hadamard type fractional differential equation with p-Laplacian operator and strip condition, J. Nonlinear Sci. Appl., 2016, 9, 5073–5081. doi: 10.22436/jnsa.009.07.10 |