2024 Volume 14 Issue 6
Article Contents

Serap Yalçın, Erbil Çetin, Fatma Serap Topal. EXISTENCE RESULTS FOR A NONLINEAR GENERALIZED CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3639-3656. doi: 10.11948/20230359
Citation: Serap Yalçın, Erbil Çetin, Fatma Serap Topal. EXISTENCE RESULTS FOR A NONLINEAR GENERALIZED CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3639-3656. doi: 10.11948/20230359

EXISTENCE RESULTS FOR A NONLINEAR GENERALIZED CAPUTO FRACTIONAL BOUNDARY VALUE PROBLEM

  • This study gives some new existence results for a three point boundary value problem involving a nonlinear fractional differential equation that incorporates a broad form of the Caputo fractional derivative concerning a new function. Our approach rests upon the fixed point theorems established by Banach, Schafer, and Schauder. Additionally, we substantiate the robustness of our findings by providing an apt illustrative example.

    MSC: 26A33, 34K10, 34K37
  • 加载中
  • [1] M. S. Abdo, A. G. Ibrahim and S. K. Panchal, Nonlinear implicit fractional differential equation involving ψ-Caputo fractional derivative, Proc. Jangjeon Math. Soc.(PJMS), 2019, 22(3), 387–400.

    Google Scholar

    [2] M. S. Abdo and S. K. Panchal, Fractional integro-differential equations involving ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 2019, 11(2), 338–359. doi: 10.4208/aamm.OA-2018-0143

    CrossRef Google Scholar

    [3] M. S. Abdo, S. K. Panchal and H. S. Hussien, Fractional integro-differential equations with nonlocal conditions and ψ-Hilfer fractional derivative, Mathematical Modelling and Analysis, 2019, 24, 564–584. doi: 10.3846/mma.2019.034

    CrossRef Google Scholar

    [4] M. S. Abdo, S. K. Panchal and A. M. Saeed, Fractional boundary value problem with ψ-Caputo fractional derivative, Proc. Indian Acad. Sci. (Math. Sci.), 2019, 129(65), 64–78.

    Google Scholar

    [5] O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Frac. Calc. Appl. Anal., 2012, 15, 700–711. doi: 10.2478/s13540-012-0047-7

    CrossRef Google Scholar

    [6] R. Almeida, A Caputo fractional derivative of a function according to another function, Commun Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [7] R. Almeida, A. B. Malinowska and M. T. Monteiro, Fractional differential equations with a Caputo derivative according to a Kernel function and their applications, Math. Method Appl. Sci., 2018, 41(1), 336–352. doi: 10.1002/mma.4617

    CrossRef Google Scholar

    [8] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922, 3, 133–181. doi: 10.4064/fm-3-1-133-181

    CrossRef Google Scholar

    [9] N. Nyamoradi, Multiple positive solutions for fractional differential systems, Ann. Univ. Ferrara, 2012, 58(2), 359–369. doi: 10.1007/s11565-012-0155-7

    CrossRef Google Scholar

    [10] H. Schaefer, Uber die Methode der a priori-Schranken, Math. Ann., 1955, 129, 415–441. doi: 10.1007/BF01362380

    CrossRef Google Scholar

    [11] E. Shivanian, On the existence and uniqueness of the solution of a nonlinear fractional diferential equation with integral boundary condition, Journal of Nonlinear Mathematical Physics, 2023. DOI: 10.1007/s44198-023-00143-3.

    CrossRef Google Scholar

    [12] D. R. Smart, Fixed Point Theorems, 1980, Vol. 66, Cup Archive.

    Google Scholar

    [13] A. Sun, Y. Su, Q. Yuan and T. Li, Existence of solutions to fractional differential equations with fractional-order derivative terms, J. Appl. Math. Comput. Mech., 2021, 11(1), 486–520.

    Google Scholar

    [14] Y. Sun, Z. Zeng and J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Applied Mathematics, 2017, 8(3), 312–323. doi: 10.4236/am.2017.83026

    CrossRef Google Scholar

    [15] J. Vanterler and E. C. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60(2), 72–91.

    Google Scholar

    [16] S. Vong, Positive solutions of singular fractional differential equations with integral boundary conditions, Math. Comput. Model., 2013, 57(5–6), 1053–1059. doi: 10.1016/j.mcm.2012.06.024

    CrossRef Google Scholar

    [17] H. A. Wahash, M. S. Abdo and S. K. Panchal, Existence and ulam-hyers stability of he implicit fractional boundary value problem with ψ-Caputo fractional derivative, J. Appl. Math. Comput. Mech., 2020, 19(1), 89–101. doi: 10.17512/jamcm.2020.1.08

    CrossRef Google Scholar

    [18] H. A. Wahash, S. K. Panchal and M. S. Abdo, Existence and stability of a nonlinear fractional differential equation involving a ψ-Caputo operator, Adv. Theory Nonlinear Anal. Appl., 2020, 4(4), 266–278.

    Google Scholar

    [19] G. Wang and T. Wang, On nonlinear Hadamard type fractional differential equation with p-Laplacian operator and strip condition, J. Nonlinear Sci. Appl., 2016, 9, 5073–5081. doi: 10.22436/jnsa.009.07.10

    CrossRef Google Scholar

Article Metrics

Article views(805) PDF downloads(365) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint