Citation: | Shengze Xia, Yi Xing, Jianan Wan, Jiaying Lu, Jianmiao Ruan. HERMITE-HADAMARD INEQUALITIES OF CONFORMABLE FRACTIONAL INTEGRALS FOR STRONGLY H-CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3610-3638. doi: 10.11948/20240166 |
In this paper, the Hermite-Hadamard type inequalities of left and right conformable fractional integrals via strongly h-convex functions are established. Furthermore, by studying some elegant properties of Beta type functions, we obtain some identities related to the two class fractional integrals with m-times differentiable functions, and then gain midpoint type and trapezoid type error estimates connected with the Hermite-Hadamard type inequalities, which generalize some known results.
[1] | T. Abdeljawad, On conformable fractional caculus, J. Comput. Appl. Math., 2015, 279, 57–66. doi: 10.1016/j.cam.2014.10.016 |
[2] |
H. Angulo, J. Giménez, A. Moros and K. Nikodem, On strongly $h$-convex functions, Ann. Funct. Anal., 2011, 2(2), 85–91. doi: 10.15352/afa/1399900197
CrossRef $h$-convex functions" target="_blank">Google Scholar |
[3] | A. Azócar, J. Giménez, K. Nikodem and J. Sánchez, On strongly midconvex functions, Opuscua Math., 2011, 31(1), 15–26. doi: 10.7494/OpMath.2011.31.1.15 |
[4] |
M. Bombardelli and S. Varŏsanec, Properties of $h$-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 2009, 58(9), 1869–1877. doi: 10.1016/j.camwa.2009.07.073
CrossRef $h$-convex functions related to the Hermite-Hadamard-Fejér inequalities" target="_blank">Google Scholar |
[5] | W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter Konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math., 1978, 23, 13–20. |
[6] | B. Çelik, H. Budak and E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat, 2024, 38(5), 1807–1823. |
[7] | S. Dragomir and R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 1998, 11(5), 91–95. doi: 10.1016/S0893-9659(98)00086-X |
[8] | S. Dragomir, M. Bhatti, M. Iqbal and M. Muddassar, Some new Hermite-Hadamard's type fractional integral inequalities, J. Comput. Anal. Appl., 2015, 18(4), 655–661. |
[9] |
S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for $s$-convex functions in the second sense, Demonstratio Math., 1999, 32(4), 687–696.
$s$-convex functions in the second sense" target="_blank">Google Scholar |
[10] |
S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (Online: |
[11] | S. Dragomir, J. Pe$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$arić and L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 1995, 21, 335–241. |
[12] | M. Feng, J. Ruan and X. Ma, Hermite-Hadamard inequalities for multidimentional strongly $h$-convex functions, Math. Inequal. Appl., 2021, 24(4), 897–911. |
[13] | E. Godunova and V. Levin, Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye, monotonnye i nekotorye drugie vidy funkcii, Vyčislitel. Mat. i. Mat. Fiz. Mežvuzov. Sb. Nauč. Trudov, MGPI, Moskva, 1985, 138–142. |
[14] | F. Hezenci, H. Budak, H. Kara and M. Sarikaya, Generalized fractional midpoint type inequalities for co-ordinated convex functions, Filomat, 2023, 37(13), 4103–4124. doi: 10.2298/FIL2313103H |
[15] | A. Hyder, H. Budak and A. Almoneef, Further midpoint inequalities via generalized fractional operators in Riemann-Liouville sense, Fractal Fract., 2022, 6(496), 1–13. |
[16] | X. Jin, B. Jin, J. Ruan and X. Ma, Some characterizations of $h$-convex functions, J. Math. Inequal., 2022, 16(2), 751–764. |
[17] | R. Khalil, M. Horani and A. Yousef and M. Sababheh, A new deiniton of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65–70. doi: 10.1016/j.cam.2014.01.002 |
[18] | U. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 2004, 147, 137–146. |
[19] | U. Kirmaci, M. Bakula, M. Özdemir and J. Pecaric, Hadamard-type inequalities for $s$-convex functions, Appl. Math. Comput., 2007, 193(1), 26–35. |
[20] | U. Kirmaci and M. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 2004, 153, 361–368. |
[21] | M. Kunt, D. Karapinar, S. Turhan and İ. İşcan, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions, J. Inequal. Appl. Special Funct., 2018, 9(1), 45–57. |
[22] | M. Kunt, D. Karapinar, S. Turhan and İ. İşcan, The left Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions, Math. Slovaca, 2019, 69(4), 773–784. doi: 10.1515/ms-2017-0261 |
[23] | N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 2010, 80, 193–199. doi: 10.1007/s00010-010-0043-0 |
[24] | K. Nikodem, Strongly convex functions and related classes of functions in: Th. M. Rassias (Ed.), Handbook of Functional Equations. Functional Inequalities, Springer Optimizations and Its Applications, 2015, 95, 365–405. |
[25] | K. Nikodem and Z. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 2011, 5(1), 83–87. doi: 10.15352/bjma/1313362982 |
[26] | K. Nikodem, J. Sánchez and L. Sánchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 2014, 4, 979–987. |
[27] | A. Olbryś, Representation theorems for $h$-convexity, J. Math. Anal. Appl., 2015, 426, 986–994. doi: 10.1016/j.jmaa.2015.01.070 |
[28] | C. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 2000, 13, 51–55. |
[29] |
C. Pearce and A. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 1999, 240(1), 92–104. doi: 10.1006/jmaa.1999.6593
CrossRef $P$-functions, quasi-convex functions and Hadamard-type inequalities" target="_blank">Google Scholar |
[30] | E. Polovinkin, Strongly convex analysis, Sbornik Math., 1996, 187(2), 103–130. |
[31] | B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 1966, 2(7), 72–75. |
[32] | S. Qaisar, F. Ahmad, S. Dragomir and M. Iqbal, New Hermite-Hadamard inequalities via fractional integrals, whose absolute values of second derivatives is $P$-convex, J. Math. Inequal., 2018, 12(3), 655–664. |
[33] | M. Samraiz, F. Nawaz, S. Wu, S. Iqbal and A. Kashuri, On the novel Hermite-Hadamard inequalities for composite inverse functions, Filomat, 2023, 37(9), 2995–3008. doi: 10.2298/FIL2309995S |
[34] | M. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for $h$-convex functions, J. Math. Inequal., 2008, 2(3), 335–341. |
[35] | M. Sarikaya, E. Set, H. Yaldiz and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 2013, 57, 2403–2407. |
[36] | E. Set, A. Akdemir and İ. Mumcu, Hermite-Hadamard's inequality and its extensions for conformable fractional integrals of any order $\alpha>0$, Creat. Math. Inform., 2018, 27(2), 197–206. |
[37] |
E. Set and A. Gözpinar, A study on Hermite-Hadamard type inequalities for $s$-convex functions via conformable fractional integrals, Stud. Univ. Babeş-Bolyai Math., 2017, 62(3), 309–323.
$s$-convex functions via conformable fractional integrals" target="_blank">Google Scholar |
[38] | E. Set, A. Gözpinar and A. Ekinci, Hermite-Hadamard type inequalities via conformable fractional integrals, Acta Math. Univ. Comenianae, 2017, 86(2), 309–320. |
[39] |
M. Tunç, On new inequalities for $h$-convex functions via Riemann-Liouville fractional integration, Filomat, 2013, 27(4), 559–565.
$h$-convex functions via Riemann-Liouville fractional integration" target="_blank">Google Scholar |
[40] | S. Turhan, The left conformable fractional Hermite-Hadamard type inequalities for convex functions, Filomat, 2019, 33(8), 2417–2430. |
[41] |
S. Turhan, İ. İşcan and M. Kunt, The right conformable fractional Hermite-Hadamard type inequalities for convex functions, Available online from: |
[42] | S. Turhan, İ. İşcan and M. Kunt, Hermite-Hadamard type inequalities for $n$-differentiable convex functions via Riemann-Liouville fractional integrals, Filomat, 2018, 32(16), 5611–5622. |
[43] | S. Varŏsanec, On $h$-convexity, J. Math. Anal. Appl., 2007, 326(1), 303–311. |
[44] |
X. Wang, J. Ruan and X. Ma, On the Hermite-Hadamard inequalities for $h$-convex functions on balls and ellipsoids, Filomat, 2019, 33(18), 5817–5886.
$h$-convex functions on balls and ellipsoids" target="_blank">Google Scholar |
[45] | Y. Xing, C. Jiang and J. Ruan, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via strongly $h$-convex fucntions, J. Math. Inequal., 2022, 16(4), 1309–1332. |