2024 Volume 14 Issue 6
Article Contents

Xiaoling Xu, Xinyi Xu, Beiqing Gu, Ronghua Wang. STUDY ON THE GENERALIZED THREE-PARAMETER LINDLEY DISTRIBUTION[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3581-3609. doi: 10.11948/20240136
Citation: Xiaoling Xu, Xinyi Xu, Beiqing Gu, Ronghua Wang. STUDY ON THE GENERALIZED THREE-PARAMETER LINDLEY DISTRIBUTION[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3581-3609. doi: 10.11948/20240136

STUDY ON THE GENERALIZED THREE-PARAMETER LINDLEY DISTRIBUTION

  • This paper introduces a new life distribution, the generalized three-parameter Lindley distribution, derived as a product of the inverse power law model and the generalized two-parameter Lindley distribution in a progressive stress accelerated life testing scenario. The study presents the graphical characteristics of the density function, failure rate function, mean failure rate function, and mean residual life function. Point estimates for the three parameters are provided through logarithmic transformation. The paper concludes with two practical examples demonstrating the application of this method.

    MSC: 62N05
  • 加载中
  • [1] M. M. E. Abd El-Monsef, A new Lindley distribution with location parameter, Communications in Statistics-Theory and Methods, 2016, 45(17), 5204–5219. doi: 10.1080/03610926.2014.941496

    CrossRef Google Scholar

    [2] M. M. E. Abd El-Monsef, W. A. Hassanein and N. M. Kilany, Erlang-Lindley distribution, Communications in Statistics-Theory and Methods, 2017, 46(19), 9494–9506. doi: 10.1080/03610926.2016.1212069

    CrossRef Google Scholar

    [3] M. Ahsanullah, M. E. Ghitany and D. K. Al-Mutairi, Characterization of Lindley distribution by truncated moments, Communications in Statistics-Theory and Methods, 2017, 46(12), 6222–6227. doi: 10.1080/03610926.2015.1124117

    CrossRef Google Scholar

    [4] A. Algarni, On a new generalized Lindley distribution: Properties estimation and applications, PLoS ONE, 2021, 16(2), 1–19.

    Google Scholar

    [5] T. Arslan, S. Acitas and B. Senoglu, Generalized Lindley and power Lindley distributions for modeling the wind speed data, Energy Conversion and Management, 2017, 152, 300–311. doi: 10.1016/j.enconman.2017.08.017

    CrossRef Google Scholar

    [6] A. Asgharzadeh, S. Nadarajah and F. Sharafi, Weibull Lindley distribution, Revstat-Statistical Journal, 2018, 16(1), 87–113.

    Google Scholar

    [7] S. K. Ashour and M. A. Eltehiwy, Exponentiated power Lindley distribution, Journal of Advanced Research, 2015, 6(6), 895–905. doi: 10.1016/j.jare.2014.08.005

    CrossRef Google Scholar

    [8] K. V. P. Barco, J. Mazucheli and V. Janeiro, The inverse power Lindley distribution, Communications in Statistics-Simulation and Computation, 2017, 46(8), 6308–6323. doi: 10.1080/03610918.2016.1202274

    CrossRef Google Scholar

    [9] M. Borah and J. Hazarika, A new quasi Poison-Lindley distribution: Properties and applications, Journal of Statistical Theory and Applications, 2017, 16(4), 576–588. doi: 10.2991/jsta.2017.16.4.11

    CrossRef Google Scholar

    [10] C. Chesneau, L. Tomy and M. Jose, Wrapped modified Lindley distribution, Journal of Statistics and Management Systems, 2021, 24(5), 1025–1040. doi: 10.1080/09720510.2020.1796313

    CrossRef Google Scholar

    [11] Y. Dai, Statistical Analysis of Lindley Distribution, Master Dissertation of Shanghai Normal University, 2018.

    Google Scholar

    [12] Y. Dai, R. Wang and X. Xu, Statistical analysis of Lindley distribution under type-I censoring sample, Statistics and Decision, 2018(1), 84–87.

    Google Scholar

    [13] M. El-Morshedy, M. S. Eliwa and H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: Properties, estimation and applications, Journal of Applied Statistics, 2020, 47(2), 354–375. doi: 10.1080/02664763.2019.1638893

    CrossRef Google Scholar

    [14] M. Ghica, N. D. Poesina and I. Prasacu, Exponentiated power quasi Lindley distribution, submodels and some properties, Review of the Air Force Academy, 2017, 15(2), 75–84. doi: 10.19062/1842-9238.2017.15.2.10

    CrossRef Google Scholar

    [15] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan and L. J. A1-Enezi, Power Lindley distribution and associated inference, Computational Statistics and Data Analysis, 2013, 64, 20–33. doi: 10.1016/j.csda.2013.02.026

    CrossRef Google Scholar

    [16] M. E. Ghitany, D. K. Al-Mutairi and S. Nadarajah, Zero-truncated Poisson-Lindley distribution and its application, Mathematics and Computers in Simulation, 2008, 79(3), 279–287. doi: 10.1016/j.matcom.2007.11.021

    CrossRef Google Scholar

    [17] M. E. Ghitany, F. Alqallaf, D. K. Al-Mutairi and H. A. Husain, A two-parameter weighted Lindley distribution and its applications to survival data, Mathematics and Computers in Simulation, 2011, 81(6), 1190–1201. doi: 10.1016/j.matcom.2010.11.005

    CrossRef Google Scholar

    [18] M. E. Ghitany, B. Atieh and S. Nadarajah, Lindley distribution and its application, Mathematics and Computers in Simulation, 2008, 78(4), 493–506. doi: 10.1016/j.matcom.2007.06.007

    CrossRef Google Scholar

    [19] T. Hussain, M. Aslam and M. Ahmad, A two parameter discrete Lindley distribution, Revista Colombiana de Estadistica, 2016, 39(1), 45–61. doi: 10.15446/rce.v39n1.55138

    CrossRef Google Scholar

    [20] S. Joshi and J. Kanichukattu, Wrapped Lindley distribution, Communications in Statistics-Theory and Methods, 2018, 47(5), 1013–1021. doi: 10.1080/03610926.2017.1280168

    CrossRef Google Scholar

    [21] S. A. Kemaloglu and M. Yilmaz. Transmuted two-parameter Lindley distribution, Communications in Statistics-Theory and Methods, 2017, 46(23), 11866–11879. doi: 10.1080/03610926.2017.1285933

    CrossRef Google Scholar

    [22] A. Khodadadi, M. Shirazi, S. Geedipally and D. Lord, Evaluating alternative variations of Negative Binormial-Lindley distribution for modelling crash data, Transportmetrica A: Transport Science, 2022, 1–22.

    Google Scholar

    [23] C. S. Kumar and R. Jose, On double Lindley distribution and some of its properties, American Journal of Mathematical and Management Sciences, 2019, 38(1), 23–43. doi: 10.1080/01966324.2018.1480437

    CrossRef Google Scholar

    [24] D. V. Lindley, Fiducial distributions and Bayes' theorem, Journal of the Royal Statistical Society, Series B: Methodological, 1958, 20(1), 102–107. doi: 10.1111/j.2517-6161.1958.tb00278.x

    CrossRef Google Scholar

    [25] H. Lv, L. Gao and C. Chen, Ailamujia distribution and its application in support data analysis, Journal of Academy of Armored Force Engineering, 2000, 16(3), 48–52.

    Google Scholar

    [26] E. Mahmoudi and H. Zakerzadeh, Generalized Poisson-Lindley distribution, Communications in Statistics-Theory and Methods, 2010, 39(10), 1785–1798. doi: 10.1080/03610920902898514

    CrossRef Google Scholar

    [27] I. Makhdoom, P. Nasiri and A. Pak, Bayesian approach for the reliability parameter of power Lindley distribution, International Journal of System Assurance Engineering and Management, 2016, 7(3), 341–355.

    Google Scholar

    [28] R. Maya and M. R. Irshad, New extended generalized Lindley distribution: Properties and Applications, Statistica, 2017, 2017(1), 33–52.

    Google Scholar

    [29] J. Mazucheli and J. A. Achcar, The Lindley distribution applied to competing risks lifetime data, Computer Methods and Programs in Biomedicine, 2011, 104(2), 188–192. doi: 10.1016/j.cmpb.2011.03.006

    CrossRef Google Scholar

    [30] M. Mesfioui and A. M. Abouammoh, On a multivariate Lindley distribution, Communications in Statistics-Theory and Methods, 2017, 46(16), 8027–8045. doi: 10.1080/03610926.2016.1171355

    CrossRef Google Scholar

    [31] M. Naderi, A. Arabpour and A. Jamalizadeh, Multivariate normal mean-variance mixture distribution based on Lindley distribution, Communications in Statistics-Simulation and Computation, 2018, 47(4), 1179–1192. doi: 10.1080/03610918.2017.1307400

    CrossRef Google Scholar

    [32] S. Nedjar and H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, Journal of Computational and Applied Mathematics, 2016, 298, 167–174. doi: 10.1016/j.cam.2015.11.047

    CrossRef Google Scholar

    [33] W. Nelson, Accelerated life testing-step-stress models and data analyses, IEEE Transactions on Reliability, 1980, R–29(2), 103–108.

    Google Scholar

    [34] W. Nelson, Accelerated testing: Statistical models, test plans, and data analysis, John Wiley & Sons, Inc, 2004, 507–509.

    Google Scholar

    [35] J. Nie and W. Gui, Parameter estimation of Lindley distribution based on progressive type-II censored competing risks data with binomial removals, Mathmatics, 2019, 7(7), 646–659.

    Google Scholar

    [36] B. Oluyede, G. Warahena-Liyanage and M. Pararai, A new class of generalized Power Lindley distribution with applications to lifetime data, Theoretical Mathematics and Applications, 2015, 5(1), 53–96.

    Google Scholar

    [37] H. Papageorgiou and M. Vardaki, Bivariate discrete Poisson-Lindley distributions, Journal of Statistical Theory and Practice, 2022, 16(2), 1–23.

    Google Scholar

    [38] R. Roozegar and S. Nadarajah, On a generalized lindley distribution, statistica, 2017, 77(2), 149–157.

    Google Scholar

    [39] M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics, 1970, 26(1), 145–149.

    Google Scholar

    [40] R. Shanker, K. K. Shukla, R. Shanker and T. A. Leonida, A three-Parameter Lindley distribution, American Journal of Mathematics and Statistics, 2017, 7(1), 15–26.

    Google Scholar

    [41] V. K. Sharma, S. K. Singh, U. Singh and V. Agiwal, The inverse Lindley distribution: A stressstrength reliability model with application to head and neck cancer data, Journal of Industrial and Production Engineering, 2015, 32(3), 162–173.

    Google Scholar

    [42] D. S. Shibu and M. R. Irshad, Extended new generalized Lindley distribution, Statistica, 2016, 76(1), 41–56.

    Google Scholar

    [43] M. Shrahili, N. Alotaibi, D. Kumar and A. R. Shafay, Inference on exponentiated power Lindley distribution based on order statistics with application, Complexity, 2020, 1–14.

    Google Scholar

    [44] A. Thongteeraparp and A. Volodin, Parameter estimation of the negative binomial-new weighted Lindley distribution by the method of maximum likelihood, Journal of Mathematics, 2020, 41(3), 430–434.

    Google Scholar

    [45] M. Yilmaz, M. Hameldarbandi and S. A. Kemaloglu, Exponential-modified discrete Lindley distribution, Springer Plus, 2016, 5, 1660–1680.

    Google Scholar

    [46] H. Zeghdoudi and S. Nedjar, A pseudo Lindley distribution and its application, The Statistics and Probability African Society, 2016, 11(1), 923–932.

    Google Scholar

Figures(32)

Article Metrics

Article views(537) PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint