2024 Volume 14 Issue 4
Article Contents

Jian Liu, Qian Ding, Hongpeng Guo, Bo Zheng. DYNAMICS OF AN EPIDEMIC MODEL WITH RELAPSE AND DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2317-2336. doi: 10.11948/20230376
Citation: Jian Liu, Qian Ding, Hongpeng Guo, Bo Zheng. DYNAMICS OF AN EPIDEMIC MODEL WITH RELAPSE AND DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2317-2336. doi: 10.11948/20230376

DYNAMICS OF AN EPIDEMIC MODEL WITH RELAPSE AND DELAY

  • In this paper, we consider a new epidemiological model with delay and relapse phenomena. Firstly, a basic reproduction number $ R_0 $ is identified, which serves as a threshold parameter for the stability of the equilibria of the model. Then, beginning with the delay-free model, the global asymptotic stability of the equilibria is obtained through the construction of suitable Lyapunov functions. For the delay model, the stability of the positive equilibrium and the existence of the local Hopf bifurcation are discussed. Furthermore, the application of the normal form theory and center manifold theorem is used to determine the direction and stability of these Hopf bifurcations. Finally, we shed light on corresponding biological implications from a numerical perspective. It turns out that time delay affects the stability of the positive equilibrium, leading to the occurrence of periodic oscillations and disease recurrence.

    MSC: 92D30, 34D23, 34K20
  • 加载中
  • [1] H. Akkocaoğlu, H. Merdan and C. Çelik, Hopf bifurcation analysis of a general non-linear differential equation with delay, J. Comput. Appl. Math., 2013, 237(1), 565–575. doi: 10.1016/j.cam.2012.06.029

    CrossRef Google Scholar

    [2] C. Castillo-Garsow, G. Jordan-Salivia and A. Rodriguez-Herrera, Mathematical models for the dynamics of tobacco use, recovery, and relapse, Technical Report Series BU–1505–M, Cornell University, New York, 1997.

    Google Scholar

    [3] Y. M. Chen, J. Q. Li and S. F. Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, Math. Methods Appl. Sci., 2019, 42(4), 1283–1291. doi: 10.1002/mma.5439

    CrossRef Google Scholar

    [4] J. Chin, Control of Communicable Diseases Manual, American Public Health Association, Washington, 1999.

    Google Scholar

    [5] Q. Ding, Y. F. Liu, Y. M. Chen and Z. M. Guo, Dynamics of a reaction-diffusion SIRI model with relapse and free boundary, Math. Biosci. Eng., 2020, 17(2), 1659–1676. doi: 10.3934/mbe.2020087

    CrossRef Google Scholar

    [6] Y. Enatsu, E. Messina and Y. Muroya, Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates, Appl. Math. Comput., 2012, 218(9), 5327–5336.

    Google Scholar

    [7] Y. Fan, Pattern formation of a spatial epidemic model with standard incidence rate, Indian J. Phys., 2014, 88, 413–419. doi: 10.1007/s12648-013-0431-0

    CrossRef Google Scholar

    [8] M. N. Frioui, T. M. Touaoula and B. Ainseba, Global dynamics of an age-structured model with relapse, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25(6), 2245–2270.

    Google Scholar

    [9] D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Hopf bifurcation in two SIRS density dependent epidemic models, Math. Comput. Modeling, 2004, 39(11–12), 1261–1283. doi: 10.1016/j.mcm.2004.06.007

    CrossRef Google Scholar

    [10] J. K. Hale, Oscillations in Neutral Functional Differential Equations, Non-Linear Mechanics, Springer Berlin Heidelberg, 2010.

    Google Scholar

    [11] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambrige University Press, New York, 1981.

    Google Scholar

    [12] M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2013.

    Google Scholar

    [13] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Pro. R. Soc. Lond. A., 1927, 115(772), 700–721. doi: 10.1098/rspa.1927.0118ticle/CJFDTOTAL-DWJS202205003.htm

    CrossRef Google Scholar

    [14] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, II. The problem of endemicity, Pro. R. Soc. Lond. A., 1932, 138(A), 55–83.

    Google Scholar

    [15] Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal. Real World Appl., 2005, 6(3), 495–507. doi: 10.1016/j.nonrwa.2004.10.001

    CrossRef Google Scholar

    [16] S. W. Martin, Livestock Disease Eradication: Evaluation of the Cooperative State-Federal Bovine Tuberculosis Eradication Program, National Academy Press, 1994.

    Google Scholar

    [17] H. Moreira and Y. Wang, Global stability in a $S\to I\to R\to I$ model, SIAM Rev., 1997, 39, 497–502.

    $S\to I\to R\to I$ model" target="_blank">Google Scholar

    [18] H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011.

    Google Scholar

    [19] B. Sounvoravong and S. J. Guo, Dynamics of a diffusive SIR epidemic model with time delay, J. Nonl. Mod. Anal., 2019, 1(3), 319–334.

    Google Scholar

    [20] X. H. Tian, R. Xu, N. Bai and J. Z. Lin, Bifurcation analysis of an age-structured SIRI epidemic model, Math. Biosci. Eng., 2020, 17(6), 7130–7150. doi: 10.3934/mbe.2020366

    CrossRef Google Scholar

    [21] D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 1990, 32(1), 136–139. doi: 10.1137/1032003

    CrossRef Google Scholar

    [22] P. van den Driessche, L. Wang and X. F. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 2007, 4(2), 205–219. doi: 10.3934/mbe.2007.4.205

    CrossRef Google Scholar

    [23] P. van den Driessche and X. F. Zou, Modeling relapse in infectious diseases, Math. Biosci., 2007, 207(1), 89–103. doi: 10.1016/j.mbs.2006.09.017

    CrossRef Google Scholar

    [24] K. E. VanLandingham, H. B. Marsteller, G. W. Ross and F. G. Hayden, Relapse of herpes simplex encephalitis after conventional acyclovir therapy, JAMA, 1988, 259(7), 1051–1053. doi: 10.1001/jama.1988.03720070051034

    CrossRef Google Scholar

    [25] C. Vargas-De-León, On the global stability of infectious diseases models with relapse, Abstraction Appl., 2013, 9, 50–61.

    Google Scholar

    [26] J. L. Wang and H. Y. Shu, Global analysis on a class of multi-group SEIR model with latency and relapse, Math. Biosci. Eng., 2007, 13(1), 209–225.

    Google Scholar

    [27] L. Wang and W. Yang, Global dynamics of a two-patch SIS model with infection during transport, Appl. Math. Comput., 2011, 217(21), 8458–8467.

    Google Scholar

    [28] R. Xu, Global dynamics of a delayed epidemic model with latency and relapse, Nonlinear Anal. Model. Control, 2013, 18(2), 250–263. doi: 10.15388/NA.18.2.14026

    CrossRef Google Scholar

    [29] R. Xu, Global dynamics of an SEIRI epidemiological model with time delay, Appl. Math. Comput., 2014, 232(1), 436–444.

    Google Scholar

    [30] D. X. Yan and X. F. Zou, Dynamics of an epidemic model with relapse over a two-patch environment, Math. Biosci. Eng., 2020, 17(5), 6098–6127. doi: 10.3934/mbe.2020324

    CrossRef Google Scholar

    [31] Y. Yang, T. S. Abdullah, G. Huang and Y. P. Dong, Mathematical analysis of SIR epidemic model with piecewise infection rate and control strategies, J. Nonl. Mod. Anal., 2023, 5(3), 524–539.

    Google Scholar

    [32] Y. L. Yang, J. H. Wu, J. Q. Li and X. X. Xu, Tuberculosis with relapse: A model, Math. Popul. Stud., 2017, 24(1), 3–20. doi: 10.1080/08898480.2014.998550

    CrossRef Google Scholar

    [33] M. Zhao, W. T. Li and Y. Zhang, Dynamics of an epidemic model with advection and free boundaries, Math. Biosci. Eng., 2020, 16(5), 5991–6014.

    Google Scholar

Figures(3)

Article Metrics

Article views(1091) PDF downloads(391) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint