Citation: | Lulu Wang, Qiaozhen Ma. EXISTENCE OF THE GENERALIZED EXPONENTIAL ATTRACTOR FOR COUPLED SUSPENSION BRIDGE EQUATIONS WITH DOUBLE NONLOCAL TERMS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2337-2358. doi: 10.11948/20230381 |
We investigate the long-time dynamical behavior of coupled suspension bridge equations with double nonlocal terms by using the quasi-stable methods. We first establish the well-posedness of the solutions by means of the monotone operator theory. Secondly, the dissipation of solution semigroup $ \{S(t)\}_{t\geq0} $ is obtained, and then, the asymptotic smoothness of solution semigroup $ \{S(t)\}_{t\geq0} $ is verified by the energy reconstruction method; ultimately, we prove the existence of global attractor. Finally, we show the existence of the generalized exponential attractor.
[1] | N. U. Ahmed and H. Harbi, Mathematical analysis of dynamical models of suspension bridge, Siam. J. Appl. Math., 1998, 58(3), 853–874. doi: 10.1137/S0036139996308698 |
[2] | M. Al-Gharabli and S. Messaoudi, Stability results of a suspension-bridge with nonlinear damping modulated by a time dependent coefficient, Carpathian J. Math., 2023, 39(3), 659–665. |
[3] | M. Aouadi, Robustness of global attractors for extensible coupled suspension bridge equations with fractional damping, Appl. Math. Opti., 2021, 84(1), 403–435. |
[4] | M. Aouadi, Continuity of global attractors for a suspension bridge equation, Acta. Appl. Math., 2021, 176(1), 1–28. doi: 10.1007/s10440-021-00441-2 |
[5] | I. Bochicchio, C. Giorgi and E. Vuk, Long-term damped dynamics of the extensible suspension bridge equations, Inter. J. Diff. Equas., 2010, 2010(1), 1–19. |
[6] | I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 2008, 195(912). |
[7] | I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics. Springer, New York, 2010. |
[8] | Z. Hajjej, General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, Z. Angew. Math. Phys., 2021, 72(3), 1–26. |
[9] | Z. Hajjej, M. M. Al-Gharabli and S. A. Messaoudi, Stability of a suspension bridge with a localized structural damping, Discrete. Cont. Dyn. Syst. S., 2022, 15(5), 1165–1181. doi: 10.3934/dcdss.2021089 |
[10] | J. R. Kang, Long-time behavior of a suspension bridge equations with past history, Appl. Math. Comput., 2015, 265, 509–519. |
[11] | J. R. Kang, Global attractor for suspension bridge equations with memory, Math. Methods Appl. Sci., 2016, 39(4), 762–775. doi: 10.1002/mma.3520 |
[12] | A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire., 1987, 4(3), 243–274. |
[13] | A. C. Lazer and P. J. Mckenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 1990, 32(4), 537–578. doi: 10.1137/1032120 |
[14] | Q. Z. Ma and S. P. Wang and X. B. Chen, Uniform compact attractors for the coupled suspension bridge equations, Appl. Math. Comput., 2011, 217(14), 6604–6615. |
[15] | Q. Z. Ma and C. K. Zhong, Existence of global attractors for the coupled system of suspension bridge equations, J. Math. Anal. Appl., 2005, 308(1), 365–379. doi: 10.1016/j.jmaa.2005.01.036 |
[16] | Q. Z. Ma and C. K. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Diff. Equas., 2009, 246(10), 3755–3775. doi: 10.1016/j.jde.2009.02.022 |
[17] | P. J. McKenna and W. Walter, Nonlinear osciliatons in a suspension bridge, Arch. Rational Mech. Anal., 1987, 98, 167–177. doi: 10.1007/BF00251232 |
[18] | S. Mukiawa, M. Leblouba and S. Messaoudi, On the well-posedness and stability for a coupled nonlinear suspension bridge problem, Commun. Pure Appl. Anal., 2023, 22(9), 2716–2743. doi: 10.3934/cpaa.2023084 |
[19] | J. Y. Park and J. R. Kang, Global attractors for the suspension bridge equations, Quart. Appl. Math., 2011, 69(3), 465–475. doi: 10.1090/S0033-569X-2011-01259-1 |
[20] | J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann. Math. Pure. Appl., 1986, 146(1), 65–96. doi: 10.1007/BF01762360 |
[21] | S. P. Wang and Q. Z. Ma, Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay, Discrete. Cont. Dyn. Syst. B., 2020, 25(4), 1299–1316. |
[22] | S. P. Wang, Q. Z. Ma and X. K. Shao, Dynamics of suspension bridge equation with delay, J. Dyn. Diff. Equas., 2023, 35(4), 3563–3588. doi: 10.1007/s10884-022-10130-9 |
[23] | L. J. Yao and Q. Z. Ma, Long-time behavior of solution for Kirchhoff suspension bridge equations, Acta. Math. Sinica., Chinese Series, 2022, 65(3), 499–512. |
[24] | C. X. Zhao, C. Y. Zhao and C. K. Zhong, The global attractor for a class of extensible beams with nonlocal weak damping, Discrete. Cont. Dyn. Syst. B., 2020, 25(3), 935–955. |
[25] | C. K. Zhong, Q. Z. Ma and C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 2007, 67(2), 442–454. |