Citation: | J. Vanterler da C. Sousa. RESONANCE FOR P -LAPLACIAN AND ASYMMETRIC NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2359-2368. doi: 10.11948/20230384 |
In the present paper, we aim to investigate the existence of solutions for the quasilinear boundary value problem involving fractional operators in the $ \psi $-fractional space $ \mathcal{H}^{\alpha}_{p}([0, T], \mathbb{R}) $ with asymmetric nonlinearities.
[1] | D. Arcoya and L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Anal., 1997, 28, 1623–1632. doi: 10.1016/S0362-546X(96)00022-3 |
[2] | D. A. V. I. D. Arcoya, M. C. M. Rezende and E. A. B. Silva, Quasilinear problems under local Landesman–Lazer condition, Calc. Var. Partial Diff. Equ. 2019, 58(6), 1–27. |
[3] | A. Bonnet, A deformation lemma on a $C^{1}$ manifold, Manuscripta Math., 1993, 81(3), 339–359. |
[4] | J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations, J. Math. Anal. Appl., 2000, 245, 7–19. doi: 10.1006/jmaa.2000.6713 |
[5] | G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A., 1978, 112(2), 332–336. |
[6] | Y. Chen and J. Su, Bounded resonant problems driven by fractional Laplacian, Topol. Meth. Nonlinear Anal., 2021, 57(2), 635–661. |
[7] | M. Cuesta, D. de Figueiredo and J. -P. Gossez, The beginning of the Fucik spectrum for the $p$-Laplacian, J. Diff. Eq., 1999, 159, 212–238. doi: 10.1006/jdeq.1999.3645 |
[8] |
E. N. Dancer and K. Perera, Some remarks on the Fucik spectrum of the $p$-Laplacian and critical groups, J. Math. Anal. Appl., 2001, 254, 164–177. doi: 10.1006/jmaa.2000.7228
CrossRef $p$-Laplacian and critical groups" target="_blank">Google Scholar |
[9] | P. Drabek and S. B. Robinson, Resonance problems for the $p$-Laplacian, J. Funct. Anal., 1999, 169(1), 189–200. doi: 10.1006/jfan.1999.3501 |
[10] |
R. Ezati and N. Nyamoradi, Existence and multiplicity of solutions to a $\psi$-Hilfer fractional $p$-Laplacian equations, Asian-European J. Math., 2022, 2350045.
$\psi$-Hilfer fractional |
[11] |
R. Ezati and N. Nyamoradi, Existence of solutions to a Kirchhoff $\psi$-Hilfer fractional $p$-Laplacian equations, Math. Meth. Appl. Sci., 2021, 44(17), 12909–12920. doi: 10.1002/mma.7593
CrossRef $\psi$-Hilfer fractional |
[12] |
B. Q. Hung and H. Q. Toan, On fractional $p$-Laplacian equations at resonance, Bull. Malaysian Math. Sci. Soc., 2020, 43(2), 1273–1288. doi: 10.1007/s40840-019-00740-w
CrossRef $p$-Laplacian equations at resonance" target="_blank">Google Scholar |
[13] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006, 204. |
[14] | E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mechanics, 1970, 19(7), 609–623. |
[15] | S. Liu, Multiple solutions for elliptic resonant problems, Proc. Royal Soc. Edinburgh Sec. A: Math., 2008, 138(6), 1281–1289. doi: 10.1017/S0308210507000443 |
[16] | Y. Ma, F. Zhang and C. Li, Existence and uniqueness of the solutions to the fractional differential equations, Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis: Fractional Dynamics, Network Dynamics, Classical Dynamics and Fractal Dynamics with Their Numerical Simulations, 2013, 23–48. |
[17] | C. Milici, G. Daganescu and J. A. Tenreiro Machado, Introduction to Fractional Differential Equations, Springer, 25, 2018. |
[18] | M. D. Ortigueira and J. A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys., 2015, 293, 4–13. doi: 10.1016/j.jcp.2014.07.019 |
[19] |
J. V. da C. Sousa, Existence and uniqueness of solutions for the fractional differential equations with $p$-Laplacian in $\mathcal{H}^{\nu,\eta;\psi}_{p}$, J. Appli. Anal. Comput., 2022, 12(2), 622–661.
$p$-Laplacian in |
[20] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91. doi: 10.1016/j.cnsns.2018.01.005
CrossRef $\psi$-Hilfer fractional derivative" target="_blank">Google Scholar |
[21] |
J. V. da C. Sousa, C. T. Ledesma, M. Pigossi and J. Zuo, Nehari manifold for weighted singular fractional $p$-Laplace equations, Bull. Braz. Math. Soc., New Series, 2022, 53(4), 1245–1275. doi: 10.1007/s00574-022-00302-y
CrossRef $p$-Laplace equations" target="_blank">Google Scholar |
[22] | J. V. da C. Sousa, N. Nyamoradi and M. Lamine, Nehari manifold and fractional Dirichlet boundary value problem, Anal. Math. Phys., 2022, 12(6), 143. doi: 10.1007/s13324-022-00754-x |
[23] |
J. V. da C. Sousa, J. Zuo and Donal O'Regan, The Nehari manifold for a $\psi$-Hilfer fractional $p$-Laplacian, Applicable Anal., 2021, 1–31.
$\psi$-Hilfer fractional |
[24] | S. -Z. Song and C. -L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition, Nonlinear Analysis: Theory, Methods & Appl., 2006, 64(9), 2007–2021. |
[25] | G. S. Teodoro, J. A. Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 2019, 388, 195–208. doi: 10.1016/j.jcp.2019.03.008 |