Citation: | A. Ahmed, Mohamed Saad Bouh Elemine Vall. MULTIPLICITY OF WEAK SOLUTIONS FOR A (P(X), Q(X))-KIRCHHOFF EQUATION WITH NEUMANN BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2441-2465. doi: 10.11948/20230449 |
The aim of this study is to investigate the existence of infinitely many weak solutions for the (p(x), q(x))-Kirchhoff Neumann problem described by the following equation:
$ \left\{\begin{array}{lc}-\left(a_1+a_2 \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \Delta_{p(\cdot)} u & \\ -\left(b_1+b_2 \int_{\Omega} \frac{1}{q(x)}|\nabla u|^{q(x)} d x\right) \Delta_{q(\cdot)} u & \\ +\lambda(x)\left(|u|^{p(x)-2} u+|u|^{q(x)-2} u\right)=f_1(x, u)+f_2(x, u) & \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega .\end{array}\right. $
By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.
[1] | G. A. Afrouzi, S. Heidarkhani and S. Shokooh, Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 2015, 60(11), 1505–1521. doi: 10.1080/17476933.2015.1031122 |
[2] | A. Ahmed and M. S. B. Elemine Vall, Perturbed nonlinear elliptic Neumann problem involving anisotropic Sobolev spaces with variable exponents, Mathematiche (Catania), 2022, 77(2), 465–486. |
[3] | V. Ambrosio and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity, Commun. Contemp. Math., 2018 20(5), 1750054, 17 pp. |
[4] |
V. Ambrosio and T. Isernia, A Multiplicity result for a $(p, q) $-Schrödinger-Kirchhoff type equation, Ann. Mat. Pura Appl. (4), 2022, 201(2), 943–984. doi: 10.1007/s10231-021-01145-y
CrossRef $(p, q) $-Schrödinger-Kirchhoff type equation" target="_blank">Google Scholar |
[5] | V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation, Math. Methods Appl. Sci., 2018, 41(2), 615–645. doi: 10.1002/mma.4633 |
[6] | V. Ambrosio and V. D. Rădulescu, Fractional double-phase patterns: Concentration and multiplicity of solutions, J. Math. Pures Appl., 2020, 142(9), 101–145. |
[7] | A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 1996, 348(1), 305–330. doi: 10.1090/S0002-9947-96-01532-2 |
[8] | M. Cencelj, V. D. Rădulescu and D. D. Repov$\breve{\mathrm{s}}$, Double phase problems with variable growth, Nonlinear Anal., 2018, 177, 270–287. |
[9] | I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska-Kamińska, Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces, Springer, 2021. |
[10] | F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4), 2016, 195(6), 1917–1959. doi: 10.1007/s10231-015-0542-7 |
[11] | A. Crespo-Blanco, L. Gasiǹski, P. Harjulehto and P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations, 2022, 323, 182–228. doi: 10.1016/j.jde.2022.03.029 |
[12] | L. Diening, P. Harjulehto, P. Hästö and M. Rủ$\breve{\mathrm{z}}$i$\breve{\mathrm{c}}$ka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, 2011. |
[13] |
N. C. Eddine and Du$\breve{\mathrm{s}}$an D. Repov$\breve{\mathrm{s}}$, The Neumann problem for a class of generalized Kirchhoff-type potential systems, Bound. Value Probl., 2023, 2023(19). DOI: |
[14] | M. El Ouaarabi, C. Allalou and S. Melliani, Weak solutions for double phase problem driven by the$ (p(x), q(x))$-Laplacian operator under Dirichlet boundary conditions, Bol. Soc. Parana. Mat., 2023, 41, 1–14. |
[15] | M. S. B. Elemine Vall and A. Ahmed, Infinitely many weak solutions for perturbed nonlinear elliptic Neumann problem in Musielak-Orlicz-Sobolev framework, Acta Sci. Math. (Szeged), 2020, 86(3–4), 601–616. doi: 10.14232/actasm-020-161-9 |
[16] | M. S. B. Elemine Vall, A. Ahmed, A. Touzani and A. Benkirane, Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1 $ data, Bol. Soc. Parana. Mat. (3), 2018, 36(1), 125–150. doi: 10.5269/bspm.v36i1.29440 |
[17] | X. L. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x) $-Laplacian, C. J. Math. Anal. Appl., 2007, 334, 248–260. doi: 10.1016/j.jmaa.2006.12.055 |
[18] | S. Gala, Q. Liu and M. A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Applicable Analysis, 2012, 91(9), 1741–1747. doi: 10.1080/00036811.2011.581233 |
[19] | S. Gala and M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 2016, 95(6), 1271–1279. doi: 10.1080/00036811.2015.1061122 |
[20] | J. R. Graef, S. Heidarkhani and L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math., 2013, 63(3–4), 877–889. doi: 10.1007/s00025-012-0238-x |
[21] | P. Gwiazda, P. Minakowski and A. Wróblewska-Kamin, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 2012, 10(6), 2019–2032. |
[22] | P. Gwiazda, I. Skrzypczak and A. Zatorska-Goldstein, Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differential Equations, 2018, 264(1), 341–377. doi: 10.1016/j.jde.2017.09.007 |
[23] | P. Gwiazda and A. Swierczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 2008, 18(7), 1073–1092. doi: 10.1142/S0218202508002954 |
[24] | P. Harjulehto and P. Hästö, Sobolev Inequalities for Variable Exponents Attaining the Values $ 1$ and n, Publ. Mat., 2008, 52(2), 347–363. |
[25] | T. Isernia, Sign-changing solutions for a fractional Kirchhoff equation, Nonlinear Anal., 2020, 190, 111623, 20 pp. doi: 10.1016/j.na.2019.111623 |
[26] | T. Isernia and D. D. Repov$\breve{\mathrm{s}}$, Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptot. Anal., 2021, 124(3–4), 371–396. |
[27] | G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883. |
[28] | J. Lei and H. Suo, Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth, AIMS Mathematics, 2021, 6(4), 3821–3837. doi: 10.3934/math.2021227 |
[29] | W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 2018, 265(9), 4311–4334. doi: 10.1016/j.jde.2018.06.006 |
[30] | W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018, 59(12), 121503. doi: 10.1063/1.5055300 |
[31] | D. Liu and P. Zhao, Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces, Nonlinear Anal. Real World Appl., 2015, 26, 315–329. doi: 10.1016/j.nonrwa.2015.06.002 |
[32] | M. Mihăilescu and V. D. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, 2008, 58(6), 2087–2111. doi: 10.5802/aif.2407 |
[33] | N. S. Papageorgiou, V. D. Rădulescu and D. D. Repov$\breve{\mathrm{s}}$, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys., 2018, 69, 108. |
[34] | K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023. doi: 10.1142/S0219199717500237 |
[35] | S. Polidoro and M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoam., 2008, 24(3), 1011–1046. doi: 10.4171/rmi/565 |
[36] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113(1–2), 401–410. doi: 10.1016/S0377-0427(99)00269-1 |
[37] | B. Ricceri, Energy functionals of Kirchhoff-type problems having multiple global minima, Nonlinear Anal., 2015, 115, 130–136. doi: 10.1016/j.na.2014.12.012 |
[38] | B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 2010, 46(4), 543–549. doi: 10.1007/s10898-009-9438-7 |
[39] | M. Rủ$\breve{\mathrm{z}}$i$\breve{\mathrm{c}}$ka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, Berlin, 2000, 1748. |
[40] | R. Stegliǹski, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^N$, Nonlinear Anal., 2022, 214, 112580. doi: 10.1016/j.na.2021.112580 |
[41] |
S. Yacini, M. El Ouaarabi, C. Allalou and K. Hilal, Existence result for double phase problem involving the $ (p(x), q(x))$-Laplacian-like operators, J. Nonlinear Anal. Appl., 2023, 14(1), 3201–3210.
$ (p(x), q(x))$-Laplacian-like operators" target="_blank">Google Scholar |
[42] | J. Zhang, The critical Neumann problem of Kirchhoff type, Appl. Math. Comput., 2016, 274, 519–530. |
[43] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv Akad Nauk SSSR Ser Mat., 1986, 50(4), 675–710. |
[44] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 1995, 3(2), 249–269. |
[45] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 1997, 5(1), 105–116. |
[46] | V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Diffrential Operators and Integral Functionals, Berlin, Springer-Verlag, 1994. |