Citation: | Pingping Zhang, Wei Song. BOUNDARY VALUE PROBLEMS FOR AN ITERATIVE DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2431-2440. doi: 10.11948/20230433 |
This paper discusses the solutions of an iterative differential equation under general boundary value conditions. Using an auxiliary integral equation without the help of Green's functions usually being constructed in higher order equations, we prove the existence and uniqueness of solutions by the fixed point theorems of Schauder and Banach, respectively. Our theorems generalize and revise the related results.
[1] | P. Andrzej, On some iterative differential equations I, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 1968, 12, 53–56. |
[2] | A. Bouakkaz, A. Ardjouni, R. Khemis and A. Djoudi, Periodic solutions of a class of third order functional differential equations with iterative source terms, Bol. Soc. Mat. Mex., 2020, 26, 443–458. doi: 10.1007/s40590-019-00267-x |
[3] | G. M. Dunkel, On nested functional differential equations, SIAM J. Appl. Math., 1970, 18, 514–525. doi: 10.1137/0118044 |
[4] |
E. Eder, The functional differential equation $x^{\prime}(t)=x(x(t)) $, J. Diff. Equa., 1984, 54, 390–400. doi: 10.1016/0022-0396(84)90150-5
CrossRef $x^{\prime}(t)=x(x(t)) $" target="_blank">Google Scholar |
[5] | M. Fe$\breve{c}$kan, On a certain type of functional differential equations, Math. Slovaca., 1993, 43, 39–43. |
[6] | W. Ge and Y. Mo, Existence of solutions to differential-iterative equation, J. B. Inst. Techno., 1997, 6(3), 192–200. |
[7] | L. J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 1971, 29, 467–473. |
[8] | A. Guerfi and A. Ardjouni, Periodic solutions for second order totally nonlinear iterative differential equations, J. Anal., 2022, 30, 353–367. doi: 10.1007/s41478-021-00347-0 |
[9] | E. R. Kaufmann, Existence and uniqueness of solutions for a second-order iterative boundary-value problem, Electron. J. Differ. Eq., 2018, 2018(150), 1–6. |
[10] | R. Oberg, On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc., 1969, 20, 295–302. doi: 10.1090/S0002-9939-1969-0234094-6 |
[11] | J. Si and X. Wang, Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl., 1998, 226, 377–392. doi: 10.1006/jmaa.1998.6086 |
[12] |
J. Si, X. Wang and S. Cheng, Nondecreasing and convex $C^2 $-solutions of an iterative functional-differential equation, Aequ. Math., 2000, 60, 38–56. doi: 10.1007/s000100050134
CrossRef $C^2 $-solutions of an iterative functional-differential equation" target="_blank">Google Scholar |
[13] | J. Si and W. Zhang, Analytic solutions of a class of iterative functional differential equations, J. Comp. Appl. Math., 2004, 162, 467–481. doi: 10.1016/j.cam.2003.08.049 |
[14] |
S. Staněk, On global properties of solutions of functional differential equation $x^{\prime}(t)=x(x(t))+x(t) $, Dynamic Systems Appl., 1995, 4, 263–278.
$x^{\prime}(t)=x(x(t))+x(t) $" target="_blank">Google Scholar |
[15] | A. Turab and W. Sintunavarat, A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results, Alex. Eng. J., 2021, 60, 5797–5802. doi: 10.1016/j.aej.2021.04.031 |
[16] | K. Wang, On the equation $x^{\prime}(t)=f(x(x(t))) $, Funk. Ekva., 1990, 33(3), 405–425. |
[17] | D. Yang and W. Zhang, Solutions of equivariance for iterative differential equations, Appl. Math. Lett., 2004, 17, 759–765. doi: 10.1016/j.aml.2004.06.002 |
[18] | Y. Zeng, P. Zhang, T. Lu and W. Zhang, Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 2017, 453, 629–644. doi: 10.1016/j.jmaa.2017.04.020 |
[19] | P. Zhang and X. Gong, Existence of solutions for iterative differential equations, Electron. J. Differ. Eq., 2014, 2014(7), 1–10. |
[20] | P. Zhang and L. Mi, Analytic solutions of a second order iterative functional differential equation, Appl. Math. Comp., 2009, 210, 277–283. doi: 10.1016/j.amc.2008.12.007 |
[21] | W. Zhang, Discussion on the differentiable solutions of the iterated equation $\sum_{i=1}. {n}\lambda_{i}f. {i}(x)=F(x)$, Nonlinear Anal., 1990, 15, 387–398. |
[22] | H. Zhao and M. Fečkan, Periodic solutions for a class of differential equations with delays depending on state, Math. Commun., 2017, 22, 1–14. |