2024 Volume 14 Issue 4
Article Contents

Zhouhong Li, Xiaofang Meng, Kaipeng Hu, Yu Fei. QUASI-PROJECTIVE SYNCHRONIZATION ANALYSIS FOR DELAYED STOCHASTIC QUATERNION-VALUED NEURAL NETWORKS VIA STATE-FEEDBACK CONTROL STRATEGY[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2411-2430. doi: 10.11948/20230399
Citation: Zhouhong Li, Xiaofang Meng, Kaipeng Hu, Yu Fei. QUASI-PROJECTIVE SYNCHRONIZATION ANALYSIS FOR DELAYED STOCHASTIC QUATERNION-VALUED NEURAL NETWORKS VIA STATE-FEEDBACK CONTROL STRATEGY[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2411-2430. doi: 10.11948/20230399

QUASI-PROJECTIVE SYNCHRONIZATION ANALYSIS FOR DELAYED STOCHASTIC QUATERNION-VALUED NEURAL NETWORKS VIA STATE-FEEDBACK CONTROL STRATEGY

  • Author Bio: Email: zhouhli@yeah.net, lzh@yxnu.edu.cn(Z. Li); Email: xfmeng@ynufe.edu.cn(X. Meng); Email: hukaipeng@ynufe.edu.cn(K. Hu)
  • Corresponding author: Email: feiyu@ynufe.edu.cn(Y. Fei)
  • Fund Project: The authors were supported by the Yunnan Fundamental Research Projects under Grant 202201AU070170, and the Science Research Fund Projects of Yunnan University of Finance and Economics under Grant 2023D40, and the Yunnan Province XingDian Talent Support Program (YNWR-YLXZ-2018-020), and the Key Laboratory of Complex Dynamics System and Application Analysis of Department of Education of Yunnan Province
  • In this paper, we explore the complete synchronization and quasi-projective synchronization in a class of stochastic delayed quaternion-valued neural networks, utilizing a state-feedback control scheme. The studied neural networks into real-valued networks are short of known decomposing, by designing a very general nonlinear controller, according to the quaternion form It? formula with a number of inequality techniques in the configuration of quaternion domain, we obtained a quasi-projective synchronization criterion for drive-response networks. Moreover, we estimate the error margin for quasi-projective synchronization. At last, the theoretical results are confirmed by a numerical simulation.

    MSC: 34C27, 34D06, 92B20
  • 加载中
  • [1] S. Blythe, X. Mao and X. Liao, Stability of stochastic delay neural networks, J. Franklin. I., 2001, 338(4), 481–495. doi: 10.1016/S0016-0032(01)00016-3

    CrossRef Google Scholar

    [2] S. Chen and J. Cao, Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch, Nonlinear Dynam., 2012, 67(2), 1397–1406. doi: 10.1007/s11071-011-0076-5

    CrossRef Google Scholar

    [3] X. Chen, Z. Li, Q. Song, J. Hua and Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 2017, 91, 55–65. doi: 10.1016/j.neunet.2017.04.006

    CrossRef Google Scholar

    [4] L. Dai and Y. Hou, Mean-square exponential input-to-state stability of stochastic quaternion-valued neural networks with time-varying delays, Adv. Differ. Equ., 2021, 362, 1–15.

    Google Scholar

    [5] H. Deng and H. Bao, Fixed-time synchronization of quaternion-valued neural networks, Physica A, 2019, 527, 121351. doi: 10.1016/j.physa.2019.121351

    CrossRef Google Scholar

    [6] Q. Gan, R. Xu and X. Kang, Synchronization of chaotic neural networks with mixed time delays, Commun. Nonlinear. Sci., 2011, 16(2), 966–974. doi: 10.1016/j.cnsns.2010.04.036

    CrossRef Google Scholar

    [7] D. Ghosh and S. Banerjee, Projective synchronization of time-varying delayed neural network with adaptive scaling factors, Chaos Solition Fract., 2013, 53, 1–9. doi: 10.1016/j.chaos.2013.04.007

    CrossRef Google Scholar

    [8] R. Guo, W. Lv and Z. Zhang, Quasi-projective synchronization of stochastic complex-valued neural networks with time-varying delay and mismatched parameters, Neurocomputing, 2020, 415, 184–192. doi: 10.1016/j.neucom.2020.07.033

    CrossRef Google Scholar

    [9] J. Hu, S. Zhong and L. Liang, Exponential stability analysis of stochastic delayed cellular neural network, Chaos Solition Fract., 2006, 27(4), 1006–1010. doi: 10.1016/j.chaos.2005.04.067

    CrossRef Google Scholar

    [10] C. Huang and J. Cao, Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays, Neurocomputing, 2009, 72(13–15), 3352–3356. doi: 10.1016/j.neucom.2008.12.030

    CrossRef Google Scholar

    [11] T. Huang, C. Li and X. Liao, Synchronization of a class of coupled chaotic delayed systems with parameter mismatch, Chaos, 2007, 17(3), 033121. doi: 10.1063/1.2776668

    CrossRef Google Scholar

    [12] T. Isokawa, T. Kusakabe, N. Matsui and F. Peper, Quaternion Neural Network and its Application, Springer, Berlin, Heidelberg, 2003.

    Google Scholar

    [13] I. Hussain, S. Jafari, D. Ghosh and M. Perc, Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons, Nonlinear Dynam., 2021, 104, 2711–2721. doi: 10.1007/s11071-021-06427-x

    CrossRef Google Scholar

    [14] A. Kumar, S. Das and Y. Joo, Quasi-projective synchronization of memristor-based complex valued recurrent neural network with time-varying delay and mismatched parameters, Neurocomputing, 2023, 559, 126774. doi: 10.1016/j.neucom.2023.126774

    CrossRef Google Scholar

    [15] H. Li, J. Cao, C. Hu, H. Jiang and F. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE Trans. Neural Netw. Learn. Syst., 2023. DOI: 10.1109/TNNLS.2023.3274959.

    CrossRef Google Scholar

    [16] H. Li, B. Chen, Q. Zhou and S. Fang, Robust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays, Phys. Lett. A, 2008, 372(19), 3385–3394. doi: 10.1016/j.physleta.2008.01.060

    CrossRef Google Scholar

    [17] H. Li, C. Hu, J. Cao, H. Jiang and A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Networks, 2019, 118, 102–109. doi: 10.1016/j.neunet.2019.06.008

    CrossRef Google Scholar

    [18] R. Li, J. Cao, C. Xue and R. Manivannan, Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks, Appl. Math. Comput., 2021, 395, 125851.

    Google Scholar

    [19] R. Li, X. Gao and J. Cao, Exponential synchronization of stochastic memristive neural networks with time-varying delays, Neural Process. Lett., 2019, 50(1), 459–475. doi: 10.1007/s11063-019-09989-5

    CrossRef Google Scholar

    [20] X. Li, D. Ding and D. Sang, Exponential stability of stochastic cellular neural networks with mixed delays, Commun. Stat. Theror. M., 2018, 47(19), 4881–4894. doi: 10.1080/03610926.2018.1459710

    CrossRef Google Scholar

    [21] X. Li, Q. Ma and X. Ding, Stochastic partitioned averaged vector field methods for stochastic differential equations with a conserved quantity, J. Appl. Anal. Comput., 2019, 9(5), 1663–1685.

    Google Scholar

    [22] Y. Li and C. Li, Matrix measure strategies for stabilization and synchronization of delayed bam neural networks, Nonlinear Dynam., 2016, 84(3), 1759–1770. doi: 10.1007/s11071-016-2603-x

    CrossRef Google Scholar

    [23] X. Liao and X. Mao, Exponential stability and instability of stochastic neural networks, Stoch. Anal. Appl., 1996, 14(2), 165–185. doi: 10.1080/07362999608809432

    CrossRef Google Scholar

    [24] X. Liao and X. Mao, Stability of stochastic neural networks, Neural Parallel Sci. Comput., 1996, 4(2), 205–224.

    Google Scholar

    [25] G. Ling, M. Ge, X. Liu, G. Xiao and Q. Fan, Stochastic quasi-synchronization of heterogeneous delayed impulsive dynamical networks via single impulsive control, Neural Networks, 2021, 139, 223–236. doi: 10.1016/j.neunet.2021.03.011

    CrossRef Google Scholar

    [26] X. Liu, J. Cao and W. Yu, Filippov systems and quasi-synchronization control for switched networks, Chaos: An Interdisciplinary, J. Nonlinear Sci., 2012, 22(3), 033110.

    Google Scholar

    [27] Y. Liu, L. Sun, J. Lu and J. Liang, Feedback controller design for the synchronization of Boolean control networks, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27(9), 1991–1996. doi: 10.1109/TNNLS.2015.2461012

    CrossRef Google Scholar

    [28] R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 1999, 82(15), 3042. doi: 10.1103/PhysRevLett.82.3042

    CrossRef Google Scholar

    [29] N. Matsui, T. Isokawa, H. Kusamichi, F. Peper and H. Nishimura, Quaternion neural network with geometrical operators, J. Intell. Fuzzy Syst., 2004, 15(3–4), 149–164.

    Google Scholar

    [30] F. Parastesh, M. Mehrabbeik, R. Mahtab, K. Rajagopal, S. Jafari and M. Perc, Synchronization in Hindmarsh-Rose neurons subject to higher-order interactions, Chaos, 2022, 32(1), 013125. doi: 10.1063/5.0079834

    CrossRef Google Scholar

    [31] L. Pecora and T. Carrol, Synchronization in chaotic systems, Phys. Rev. Lett., 1990, 64(4), 821–824.

    Google Scholar

    [32] T. Peng, Y. Wu, Z. Tu, A. Alofi and J. Lu, Fixed-time and prescribed-time synchronization of quaternion-valued neural networks: A control strategy involving Lyapunov functions, Neural Networks, 2023, 160, 108–121. doi: 10.1016/j.neunet.2022.12.014

    CrossRef Google Scholar

    [33] F. Ren and J. Cao, Anti-synchronization of stochastic perturbed delayed chaotic neural networks, Neural Comput. App., 2009, 18(5), 515–521. doi: 10.1007/s00521-009-0251-5

    CrossRef Google Scholar

    [34] H. Shu, Q. Song, Y. Liu, Z. Zhao and F. Alsaadi, Global μ-stability of quaternion-valued neural networks with non-differentiable time-varying delays, Neurocomputing, 2017, 247, 202–212. doi: 10.1016/j.neucom.2017.03.052

    CrossRef Google Scholar

    [35] Q. Song, R. Zeng, Z. Zhao, Y. Liu and F. Alsaadi, Mean-square stability of stochastic quaternion-valued neural networks with variable coefficients and neutral delays, Neurocomputing, 2022, 471, 130–138. doi: 10.1016/j.neucom.2021.11.033

    CrossRef Google Scholar

    [36] Q. Song, Z. Zhao, Y. Liu and F. Alsaadi, Mean-square input-to-state stability for stochastic complex-valued neural networks with neutral delay, Neurocomputing, 2022, 470, 269–277. doi: 10.1016/j.neucom.2021.10.117

    CrossRef Google Scholar

    [37] X. Sun, M. Perc and J. Kurths, Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks, Chaos, 2017, 27(5), 053113. doi: 10.1063/1.4983838

    CrossRef Google Scholar

    [38] Z. Tu, J. Cao, A. Alsaedi and T. Hayat, Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Networks, 2017, 89, 97–104. doi: 10.1016/j.neunet.2017.01.006

    CrossRef Google Scholar

    [39] L. Wan and Q. Zhou, Attractor and ultimate boundedness for stochastic cellular neural networks with delays, Nonlinear Anal-Real., 2011, 12(5), 2561–2566. doi: 10.1016/j.nonrwa.2011.03.005

    CrossRef Google Scholar

    [40] R. Wang, Z. Zhang, J. Qu and J. Cao, Phase synchronization motion and neural coding in dynamic transmission of neural information, IEEE T. Neural Networ., 2011, 22(7), 1097–1106. doi: 10.1109/TNN.2011.2119377

    CrossRef Google Scholar

    [41] Y. Wang, J. Lu, J. Liang, J. Cao and M. Perc, Pinning synchronization of nonlinear coupled Lur'e networks dnder hybrid impulses, IEEE T. Circuits-Ⅱ, 2019, 66(3), 432–436.

    Google Scholar

    [42] Z. Wang, S. Lauria and X. Liu, Exponential stability of uncertain stochastic neural networks with mixed time-delays, Chaos Solition Fract., 2007, 32(1), 62–72. doi: 10.1016/j.chaos.2005.10.061

    CrossRef Google Scholar

    [43] H. Wei, B. Wu and R. Li, Synchronization control of quaternion-valued neural networks with parameter uncertainties, Neural Process. Lett., 2019, 1–20.

    Google Scholar

    [44] R. Wei and J. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 2019, 113, 1–10. doi: 10.1016/j.neunet.2019.01.014

    CrossRef Google Scholar

    [45] R. Wei and J. Cao, Synchronization control of quaternion-valued memristive neural networks with and without event-triggered scheme, Cogn. Neurodynamics, 2019, 13(5), 489–502. doi: 10.1007/s11571-019-09545-w

    CrossRef Google Scholar

    [46] Z. Wu and X. Gong, Impulsive synchronization of time-varying dynamical network, J. Appl. Anal. Comput., 2016, 6(1), 94–102.

    Google Scholar

    [47] X. Yang, J. Cao, Y. Long and W. Rui, Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations, IEEE T. Neural Networ., 2010, 21(10), 1656–1667. doi: 10.1109/TNN.2010.2068560

    CrossRef Google Scholar

    [48] T. Zhang and Z. Li, Switching clusters' synchronization for discrete space-time complex dynamical networks via boundary feedback controls, Pattern Recogn., 2023, 143C, 109763.

    Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(1263) PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint