2024 Volume 14 Issue 4
Article Contents

Lili Jia, Juan Huang, Changyou Wang. GLOBAL STABILITY OF PERIODIC SOLUTION FOR A 3-SPECIES NONAUTONOMOUS RATIO-DEPENDENT DIFFUSIVE PREDATOR-PREY SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2392-2410. doi: 10.11948/20230397
Citation: Lili Jia, Juan Huang, Changyou Wang. GLOBAL STABILITY OF PERIODIC SOLUTION FOR A 3-SPECIES NONAUTONOMOUS RATIO-DEPENDENT DIFFUSIVE PREDATOR-PREY SYSTEM[J]. Journal of Applied Analysis & Computation, 2024, 14(4): 2392-2410. doi: 10.11948/20230397

GLOBAL STABILITY OF PERIODIC SOLUTION FOR A 3-SPECIES NONAUTONOMOUS RATIO-DEPENDENT DIFFUSIVE PREDATOR-PREY SYSTEM

  • A 3-species nonautonomous ratio-dependent diffusive predator-prey system is considered in this article. Firstly, by utilizing a comparison principle and fixed point theorem, the existence of solution which is space homogenous strictly positive and periodic for the above system is obtained. And the obtained conditions ensuring the existence of solution can be very easily verified. At the same time, we develop some new analysis techniques as a byproduct. Furthermore, with the help of the upper and lower solutions (UALS) approach for the parabolic partial differential equations and Lyapunov theory, we aim at the globally asymptotically stability problems of the solutions, and some judgment criteria are achieved. Finally, we give some numerical simulations results which validate the theoretical findings of this article.

    MSC: 39A10
  • 加载中
  • [1] T. Agrawal and M. Saleem, Complex dynamics in a ratio-dependent two-predator one-prey model, Computational & Applied Mathematics, 2015, 34(1), 265–274.

    Google Scholar

    [2] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 1989, 139(3), 311–326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [3] W. Basener, Topology and its Applications, Hoboken, NJ: John Wiley & Sons, 2006.

    Google Scholar

    [4] M. Belabbas, A. Ouahab and F. Souna, Rich dynamics in a stochastic predator-prey model with protection zone for the prey and multiplicative noise applied on both species, Nonlinear Dynamics, 2021, 106(3), 2761–2780. doi: 10.1007/s11071-021-06903-4

    CrossRef Google Scholar

    [5] C. Conser, D. L. Angelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 1999, 56(1), 65–75. doi: 10.1006/tpbi.1999.1414

    CrossRef Google Scholar

    [6] E. Cruz, M. Negreanu and J. I. Tello, Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals, Zeitschrift für angewandte Mathematik und Physik, 2018, 64(4), ID: 107.

    Google Scholar

    [7] S. M. Fu and S. B. Cui, Persistence in a periodic competitor-competitor-mutualist diffusion system, Journal of Mathematical Analysis and Applications, 2001, 263, 234–245. doi: 10.1006/jmaa.2001.7612

    CrossRef Google Scholar

    [8] Y. J. Gao and B. T. Li, Dynamics of a ratio-dependent predator-prey system with a strong Allee effect, Discrete and Continuous Dynamical Systems-Series B, 2013, 18(9), 2283–2313. doi: 10.3934/dcdsb.2013.18.2283

    CrossRef Google Scholar

    [9] K. Guo and W. B. Ma, Existence of positive periodic solutions for a periodic predator-prey model with fear effect and general functional responses, Advances in Continuous and Discrete Models, 2023, 2023, Article ID: 22.

    Google Scholar

    [10] M. Haque, Ratio-dependent predator-prey models of interacting populations, Bulletin of Mathematical Biology, 2009, 71(2), 430–452. doi: 10.1007/s11538-008-9368-4

    CrossRef Google Scholar

    [11] X. Jiang, G. Meng and Z. K. She, Existence of periodic solutions in a nonautonomous food web with Beddington-DeAngelis functional response, Applied Mathematics Letters, 2017, 71, 59–66. doi: 10.1016/j.aml.2017.03.018

    CrossRef Google Scholar

    [12] X. Jiang, R. Zhang and Z. K. She, Dynamics of a diffusive predator-prey system with ratio- dependent functional response and time delay, International Journal of Biomathematics, 2020, 13(6), Article ID: 2050036.

    Google Scholar

    [13] C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bulletin of Mathematical Biology, 1999, 61(1), 19–32. doi: 10.1006/bulm.1998.0072

    CrossRef Google Scholar

    [14] D. Kesh, A. K. Sarkar and A. B. Roy, Persistence of two prey-one predator system with ratio- dependent predator influence, Mathematical Methods in the Applied Sciences, 2000, 23(4), 347–356. doi: 10.1002/(SICI)1099-1476(20000310)23:4<347::AID-MMA117>3.0.CO;2-F

    CrossRef Google Scholar

    [15] H. H. Khalil, Nonlinear Systems, 3rd ed, Englewood Cliffs, NJ: Prentice Hall, 2002.

    Google Scholar

    [16] K. I. Kim and Z. Lin, Blowup in a three-species cooperating model, Applied Mathematics Letters, 2004, 17, 89–94. doi: 10.1016/S0893-9659(04)90017-1

    CrossRef Google Scholar

    [17] W. Ko and I. Ahn, A diffusive one-prey and two-competing-predator system with a ratio- dependent functional response: I, long time behavior and stability of equilibria, Journal of Mathematical Analysis and Applications, 2013, 397(1), 9–28. doi: 10.1016/j.jmaa.2012.07.026

    CrossRef Google Scholar

    [18] W. Ko and I. Ahn, A diffusive one-prey and two-competing-predator system with a ratio- dependent functional response: Ⅱ stationary pattern formation, Journal of Mathematical Analysis and Applications, 2013, 397(1), 29–45. doi: 10.1016/j.jmaa.2012.07.025

    CrossRef Google Scholar

    [19] A. Leung, A study of 3-species prey-predator reaction-diffusions by monotone schemes, Journal of Mathematical Analysis and Applications, 1984, 100, 583–604. doi: 10.1016/0022-247X(84)90103-3

    CrossRef Google Scholar

    [20] H. Y. Li, Z. K. She, Uniqueness of periodic solutions of a nonautonomous density-dependent predator-prey system, Journal of Mathematical Analysis and Applications, 2015, 422, 886–905. doi: 10.1016/j.jmaa.2014.09.008

    CrossRef Google Scholar

    [21] L. Li, Z. Jin and J. Li, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Applied Mathematical Modelling, 2016, 40(7–8), 4765–4777. doi: 10.1016/j.apm.2015.12.003

    CrossRef Google Scholar

    [22] A. J. Lotka, Elements of Physical Biology, New York: Williams and Wilkins, 1925.

    Google Scholar

    [23] P. S. Mandal, Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey, Physica A: Statistical Mechanics and its Applications, 2018, 496, 40–52. doi: 10.1016/j.physa.2017.12.057

    CrossRef Google Scholar

    [24] P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 2004, 200(2), 245–273. doi: 10.1016/j.jde.2004.01.004

    CrossRef Google Scholar

    [25] C. V. Pao, Global asymptotic stability of Lotka-Volterra 3-species reaction-diffusion systems with time delays, Journal of Mathematical Analysis and Applications, 2003, 281, 86–204. doi: 10.1016/S0022-247X(02)00525-5

    CrossRef Google Scholar

    [26] C. V. Pao and Y. M. Wang, Numerical solutions of a three-competition Lotka-Volterra system, Applied Mathematics and Computation, 2008, 204, 423–440. doi: 10.1016/j.amc.2008.06.057

    CrossRef Google Scholar

    [27] N. Sk, P. K. Tiwari and S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation, Mathematics and Computers in Simulation, 2022, 192, 136–166. doi: 10.1016/j.matcom.2021.08.018

    CrossRef Google Scholar

    [28] X. Tian and S. J. Guo, Spatio-temporal patterns of predator-prey model with Allee effect and constant stocking rate for predator, International Journal of Bifurcation and Chaos, 2021, 31(16), Article ID: 2150249.

    Google Scholar

    [29] J. P. Tripathi, S. Bugalia, V. Tiwari and Y. Kang, A predator-prey model with Crowley-Martin functional response: A nonautonomous study, Natural Resource Modelling, 2020, 33, e12287. doi: 10.1111/nrm.12287

    CrossRef Google Scholar

    [30] C. Vargas-De-Leon, Global stability of nonhomogeneous coexisting equilibrium state for the multispecies Lotka-Volterra mutualism models with diffusion, Mathematical Methods in the Applied Sciences, 2022, 45(4), 2123–2130. doi: 10.1002/mma.7912

    CrossRef Google Scholar

    [31] V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Memorie deU'Accademia del Lincei, 1926, 2, 31–113.

    Google Scholar

    [32] C. Y. Wang, Existence and stability of periodic solutions for parabolic systems with time delays, Journal of Mathematical Analysis and Application, 2008, 339(2), 1354–1361. doi: 10.1016/j.jmaa.2007.07.082

    CrossRef Google Scholar

    [33] C. Y. Wang, L. R. Li, Y. Q. Zhou and R. Li, On a delay ratio-dependent predator-prey system with feedback controls and shelter for the prey, International Journal of Biomathematics, 2018, 11(7), Article ID: 1850095.

    Google Scholar

    [34] C. Y. Wang, N. Li, Y. Q. Zhou, X. C. Pu and R. Li, On a multi-delay Lotka-Volterra predator-prey model with feedback controls and prey diffusion, Acta Mathematica Scientia, Series B, 2019, 39(2), 429–448. doi: 10.1007/s10473-019-0209-3

    CrossRef Google Scholar

    [35] C. Y. Wang, S. Wang and L. R. Li, Periodic solution and almost periodic solution of a nonmonotone reaction-diffusion system with time delay, Acta Mathematica Scientia, 2010, 30A, 517–524. (in Chinese).

    Google Scholar

    [36] C. Y. Wang, S. Wang, F. P. Yang and L. R. Li, Global asymptotic stability of positive equilibrium of three-species Lotka-Volterra mutualism models with diffusion and delay effects, Applied Mathematical Modelling, 2010, 34(12), 4278–4288. doi: 10.1016/j.apm.2010.05.003

    CrossRef Google Scholar

    [37] C. Y. Wang, Y. Q. Zhou, Y. H. Li and R. Li, Well-posedness of a ratio-dependent Lotka-Volterra system with feedback control, Boundary Value Problems, 2018, 2018, Article ID: 117.

    Google Scholar

    [38] J. F. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type Ⅲ functional response, Journal of Dynamics and Differential Equations, 2017, 29, 1383–1409. doi: 10.1007/s10884-016-9517-7

    CrossRef Google Scholar

    [39] M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete and Continuous Dynamical Systems -A, 2018, 38(5), 2591–2591. doi: 10.3934/dcds.2018109

    CrossRef Google Scholar

    [40] F. R. Wei, C. H. Wang and S. L. Yuan, Spatial dynamics of a diffusive predator-prey model with Leslie-Gower functional response and strong Allee effect, Journal of Nonlinear Modeling and Analysis, 2020, 2(2), 267–285.

    Google Scholar

    [41] D. Y. Wu and H. Y. Zhao, Spatiotemporal dynamics of a diffusive predator-prey system with Allee effect and threshold hunting, Journal of Nonlinear Science, 2020, 30, 1015–1054. doi: 10.1007/s00332-019-09600-0

    CrossRef Google Scholar

    [42] Y. M. Wu, F. D. Chen and C. F. Du, Dynamic behaviors of a nonautonomous predator-prey system with Holling type Ⅱ schemes and a prey refuge, Advances in Difference Equations, 2021, 2021, Article ID: 62.

    Google Scholar

    [43] X. P. Yan and C. H. Zhang, Spatiotemporal dynamics in a diffusive predator-prey system with Beddington-DeAngelis functional response, Qualitative Theory of Dynamical Systems, 2022, 21(4), Article ID: 166.

    Google Scholar

    [44] W. B. Yang, Y. L. Li, J. H. Wu and H. X. Li, Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses, Discrete and Continuous Dynamical Systems-B, 2015, 20(7), 2269–2290. doi: 10.3934/dcdsb.2015.20.2269

    CrossRef Google Scholar

    [45] T. Yu, Q. L. Wang and S. Q. Zhai, Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply, Mathematical Biosciences and Engineering, 2023, 20(8), 15094–15119. doi: 10.3934/mbe.2023676

    CrossRef Google Scholar

    [46] G. Zhang, W. Wang and X. Wang, Coexistence states for a diffusive one-prey and two-predators model with B-D functional response, Journal of Mathematical Analysis and Applications, 2012, 387(2), 931–948. doi: 10.1016/j.jmaa.2011.09.049

    CrossRef Google Scholar

    [47] L. Zhang and X. X. Bao, Propagation dynamics of a three-species nonlocal competitive- cooperative system, Nonlinear Analysis: Real World Applications, 2021, 58, ID: 103230.

    Google Scholar

    [48] X. Zhao and R. Z. Yang, Dynamical property analysis of a delayed diffusive predator-prey model with fear effect, Journal of Nonlinear Modeling and Analysis, 2023, 5(1), 1–23.

    Google Scholar

    [49] S. Zheng, A reaction-diffusion system of a competitor-competitor-mutualist model, Journal of Mathematical Analysis and Applications, 1993, 124, 254–280.

    Google Scholar

    [50] J. Zhou and C. G. Kim, Positive solutions for a Lotka-Volterra prey-predator model with cross- diffusion and Holling type-Ⅱ functional response, Science China-Mathematics, 2014, 57(5), 991–1010. doi: 10.1007/s11425-013-4711-0

    CrossRef Google Scholar

Figures(3)  /  Tables(1)

Article Metrics

Article views(1376) PDF downloads(351) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint