2024 Volume 14 Issue 6
Article Contents

Hardik Joshi, Mehmet Yavuz, Necati Özdemir. ANALYSIS OF NOVEL FRACTIONAL ORDER PLASTIC WASTE MODEL AND ITS EFFECTS ON AIR POLLUTION WITH TREATMENT MECHANISM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3078-3098. doi: 10.11948/20230453
Citation: Hardik Joshi, Mehmet Yavuz, Necati Özdemir. ANALYSIS OF NOVEL FRACTIONAL ORDER PLASTIC WASTE MODEL AND ITS EFFECTS ON AIR POLLUTION WITH TREATMENT MECHANISM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3078-3098. doi: 10.11948/20230453

ANALYSIS OF NOVEL FRACTIONAL ORDER PLASTIC WASTE MODEL AND ITS EFFECTS ON AIR POLLUTION WITH TREATMENT MECHANISM

  • In the present era, the plastic waste problem is a global challenge due to its massive production. The post-use of waste plastic influences the earth's environment, human life, marine life, and ocean. Thus there is a necessity to develop good strategies for the exclusion of plastic waste. Because of this, an extension is paid on the procedure of burning and recycling plastic waste. As a case study, the four-dimensional systems of ordinary differential equations are developed to estimate the effects of burned plastic and recycled plastic on air pollution. The well-posedness and qualitative properties are discussed. The reproduction number of the plastic waste model and local and global stability are discussed in detail. The effect of influence parameters is systematically investigated by numerical experiments. The numerical results provide a better strategy to restrict air pollution and ensure a good climate, earth's environment, and healthy human life.

    MSC: 34A08, 34A34, 34D20, 39A30, 91B76
  • 加载中
  • [1] Y. N. Anjam, M. Yavuz, M. ur Rahman and A. Batool, Analysis of a fractional pollution model in a system of three interconnecting lakes, AIMS Biophys., 2023, 10(2), 220–240. doi: 10.3934/biophy.2023014

    CrossRef Google Scholar

    [2] D. Baleanu, S. M. Aydogan, H. Mohammadi and S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alexandria Eng. J., 2020, 59(5), 3029–3039. doi: 10.1016/j.aej.2020.05.007

    CrossRef Google Scholar

    [3] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Sci., 2012.

    Google Scholar

    [4] M. Barma, H. K. Biniyamin, U. M. Modibbo and H. M. Gaya, Mathematical model for the optimization of municipal solid waste management, Front. Sustain., 2022, 3, 18.

    Google Scholar

    [5] A. Chatterjee and S. Pal, A predator-prey model for the optimal control of fish harvesting through the imposition of a tax, Int. J. Optim. Control: Theor., 2023, 13(1), 68–80.

    Google Scholar

    [6] S. Chaturvedi, B. P. Yadav, N. A. Siddiqui and S. K. Chaturvedi, Mathematical modelling and analysis of plastic waste pollution and its impact on the ocean surface, J. Ocean Eng. Sci., 2020, 5(2), 136–163. doi: 10.1016/j.joes.2019.09.005

    CrossRef Google Scholar

    [7] J. Chu, H. Liu and A. Salvo, Air pollution as a determinant of food delivery and related plastic waste, Nat. Hum. Behav., 2021, 5(2), 212–220.

    Google Scholar

    [8] J. Colwell, S. Pratt, P. Lant and B. Laycock, Hazardous state lifetimes of biodegradable plastics in natural environments, Sci. Total Environ., 2023, 165025.

    Google Scholar

    [9] J. Danane, M. Yavuz and M. Yıldız, Stochastic modeling of three-species Prey–Predator model driven by Lévy jump with mixed holling-Ⅱ and Beddington–DeAngelis functional responses, Fractal Fract., 2023, 7(10), 751. doi: 10.3390/fractalfract7100751

    CrossRef Google Scholar

    [10] F. Degli-Innocenti, M. Barbale, S. Chinaglia, E. Esposito, M. Pecchiari, F. Razza and M. Tosin, Analysis of the microplastic emission potential of a starch-based biodegradable plastic material, Polym. Degrad. Stab., 2022, 199, 109934. doi: 10.1016/j.polymdegradstab.2022.109934

    CrossRef Google Scholar

    [11] O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 2010, 7(47), 873–885. doi: 10.1098/rsif.2009.0386

    CrossRef Google Scholar

    [12] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar

    [13] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 2002, 29, 3–22. doi: 10.1023/A:1016592219341

    CrossRef Google Scholar

    [14] F. Evirgen, F. Ozköse, M. Yavuz and N. Ozdemir, Real data-based optimal control strategies for assessing the impact of the Omicron variant on heart attacks, AIMS Bioeng., 2023, 10, 218–239. doi: 10.3934/bioeng.2023015

    CrossRef Google Scholar

    [15] F. Evirgen, E. Uçar, S. Uçar and N. Özdemir, Modelling influenza a disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates, Mathematical Modelling and Numerical Simulation with Applications, 2023, 3(1), 58–72. doi: 10.53391/mmnsa.1274004

    CrossRef Google Scholar

    [16] F. Evirgen and M. Yavuz, An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative, in ITM Web of Conferences, EDP Sciences, 2018, 22, 01009.

    Google Scholar

    [17] B. Fatima, M. Yavuz, M. ur Rahman, A. Althobaiti and S. Althobaiti, Predictive modeling and control strategies for the transmission of middle east respiratory syndrome coronavirus, Mathematical and Computational Applications, 2023, 28(5), 98. doi: 10.3390/mca28050098

    CrossRef Google Scholar

    [18] T. P. Haider, C. Völker, J. Kramm, K. Landfester and F. R. Wurm, Plastics of the future? The impact of biodegradable polymers on the environment and on society, Angewandte Chemie International Edition, 2019, 58(1), 50–62. doi: 10.1002/anie.201805766

    CrossRef Google Scholar

    [19] M. Izadi, M. Parsamanesh and W. Adel, Numerical and stability investigations of the waste plastic management model in the ocean system, Math., 2022, 10(23), 4601. doi: 10.3390/math10234601

    CrossRef Google Scholar

    [20] A. Jha, N. Adlakha and B. K. Jha, Finite element model to study effect of Na+ - Ca2+ exchangers and source geometry on calcium dynamics in a neuron cell, J. Mech. Med. Biol., 2015, 16(2), 1–22.

    Google Scholar

    [21] B. K. Jha and H. Joshi, A fractional mathematical model to study the effect of buffer and endoplasmic reticulum on cytosolic calcium concentration in nerve cells, in Fractional Calculus in Medical and Health Science, Boca Raton, FL: CRC Press/Taylor & Francis Group, [2021]: CRC Press, 2020, 211–227.

    Google Scholar

    [22] B. K. Jha, V. H. Vatsal and H. Joshi, A fractional approach to study of calcium advection distribution and VGCC in astrocyte, in 2023 International Conference on Fractional Differentiation and its Applications, 2023, (ICFDA), IEEE, 1–5. DOI: 10.1109/ICFDA58234.2023.10153226.

    Google Scholar

    [23] H. Joshi and B. K. Jha, A mathematical model to study the role of buffer and ER flux on calcium distribution in nerve cells, in Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy: Proceedings of the First International Conference, MMCITRE 2020, 2021, 1287, 265–273.

    Google Scholar

    [24] H. Joshi and B. K. Jha, 2D memory-based mathematical analysis for the combined impact of calcium influx and efflux on nerve cells, Comput. Math. Appl., 2023, 134, 33–44. doi: 10.1016/j.camwa.2022.12.016

    CrossRef Google Scholar

    [25] H. Joshi and M. Yavuz, Transition dynamics between a novel coinfection model of fractional-order for COVID-19 and tuberculosis via a treatment mechanism, Eur. Phys. J. Plus, 2023, 138(5), 468. doi: 10.1140/epjp/s13360-023-04095-x

    CrossRef Google Scholar

    [26] H. Joshi, M. Yavuz and I. Stamova, Analysis of the disturbance effect in intracellular calcium dynamic on fibroblast cells with an exponential kernel law, Bulletin of Biomathematics, 2023, 1(1), 24–39.

    Google Scholar

    [27] H. Joshi, M. Yavuz, S. Townley and B. K. Jha, Stability analysis of a non-singular fractional-order COVID-19 model with nonlinear incidence and treatment rate, Phys. Scr., 2023, 98(4), 045216. doi: 10.1088/1402-4896/acbe7a

    CrossRef Google Scholar

    [28] Q. V. Khuc, T. Dang, M. Tran, D. T. Nguyen, T. Nguyen, P. Pham and T. Tran, Household-level strategies to tackle plastic waste pollution in a transitional country, Urban Science, 2023, 7(1), 20. doi: 10.3390/urbansci7010020

    CrossRef Google Scholar

    [29] P. Kumar and V. S. Erturk, Dynamics of cholera disease by using two recent fractional numerical methods, Mathematical Modelling and Numerical Simulation with Applications, 2021, 1(2), 102–111. doi: 10.53391/mmnsa.2021.01.010

    CrossRef Google Scholar

    [30] M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an seir epidemic model with vertical transmission, SIAM J. Appl. Math., 2001, 62(1), 58–69. doi: 10.1137/S0036139999359860

    CrossRef Google Scholar

    [31] R. L. Magin, Fractional Calculus in Bioengineering, Begell House, 2006.

    Google Scholar

    [32] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 1996, 2(1), 963–968.

    Google Scholar

    [33] A. Munson, A harmonic oscillator model of atmospheric dynamics using the Newton-Kepler planetary approach, Mathematical Modelling and Numerical Simulation with Applications, 2023, 3(3), 216–233. doi: 10.53391/mmnsa.1332893

    CrossRef Google Scholar

    [34] P. A. Naik, Z. Eskandari, H. E. Shahkari and K. M. Owolabi, Bifurcation analysis of a discrete-time prey-predator model, Bulletin of Biomathematics, 2023, 1(2), 111–123.

    Google Scholar

    [35] P. A. Naik, M. Yavuz, S. Qureshi, J. Zu and S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 2020, 135(10), 1–42.

    Google Scholar

    [36] P. A. Naik, M. Yavuz and J. Zu, The role of prostitution on HIV transmission with memory: A modeling approach, Alexandria Eng. J., 2020, 59(4), 2513–2531. doi: 10.1016/j.aej.2020.04.016

    CrossRef Google Scholar

    [37] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their, 1st Editio. Academic Press, Elsevier, 1998.

    Google Scholar

    [38] D. G. Prakasha, P. Veeresha and H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 2019, 134(5), 1–11.

    Google Scholar

    [39] P. Rana, K. Chaudhary, S. Chauhan, M. Barik and B. K. Jha, Dynamic analysis of mother-to-child transmission of hiv and antiretroviral treatment as optimal control, Commun. Math. Biol. Neurosci., 2022, 2022, 45.

    Google Scholar

    [40] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.

    Google Scholar

    [41] N. A. Shah, A. O. Popoola, T. Oreyeni, E. Omokhuale and M. M. Altine, A modelling of bioconvective flow existing with tiny particles and quartic autocatalysis reaction across stratified upper horizontal surface of a paraboloid of revolution, Mathematical Modelling and Numerical Simulation with Applications, 2023, 3(1), 74–100. doi: 10.53391/mmnsa.1280184

    CrossRef Google Scholar

    [42] T. Singh, Vaishali and N. Adlakha, Numerical investigations and simulation of calcium distribution in the alpha-cell, Bulletin of Biomathematics, 2023, 1(1), 40–57.

    Google Scholar

    [43] M. F. Tabassum, et al., Differential gradient evolution plus algorithm for constraint optimization problems: A hybrid approach, Int. J. Optim. Control: Theor., 2021, 11(2), 158–177.

    Google Scholar

    [44] A. B. Tufail, et al., Deep learning in cancer diagnosis and prognosis prediction: A minireview on challenges, recent trends, and future directions, Comput. Math. Methods Med., 2021, 2021, 1–28.

    Google Scholar

    [45] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 2015, 24(1–3), 75–85.

    Google Scholar

    [46] G. C. Vega, A. Gross and M. Birkved, The impacts of plastic products on air pollution-A simulation study for advanced life cycle inventories of plastics covering secondary microplastic production, Sustain. Prod. Consum., 2021, 28, 848–865. doi: 10.1016/j.spc.2021.07.008

    CrossRef Google Scholar

    [47] World Health Organization, Ambient (Outdoor) Air Pollution [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health?gclid=Cj0KCQjwjryjBhD0ARIsAMLvnFBTgKJn9hxKSPP5mxQIKqoMhuVQKGe1KRKDSYpR5-vOxcJtKXFgLgaAqEoEALwwcB. [Accessed: 25-May-2023].

    Google Scholar

    [48] S. Zhang, et al., Microplastics in the environment: A review of analytical methods, distribution, and biological effects, Trends Analyt Chem., 2019, 111, 62–72. doi: 10.1016/j.trac.2018.12.002

    CrossRef Google Scholar

Figures(9)  /  Tables(2)

Article Metrics

Article views(806) PDF downloads(687) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint