2024 Volume 14 Issue 6
Article Contents

Zisheng Liu, Ting Zhang. CONVERGENCE ANALYSIS ON THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR THE COSPARSE OPTIMIZATION PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3061-3077. doi: 10.11948/20230407
Citation: Zisheng Liu, Ting Zhang. CONVERGENCE ANALYSIS ON THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR THE COSPARSE OPTIMIZATION PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3061-3077. doi: 10.11948/20230407

CONVERGENCE ANALYSIS ON THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR THE COSPARSE OPTIMIZATION PROBLEM

  • Author Bio: Email: zhangting314314@126.com(T. Zhang)
  • Corresponding author: Email: liuzisheng0710@163.com(Z. Liu) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China Mathematics Tian Yuan Fund under grant No. 12226323 and 12226315, the National Natural Science Foundation of China under grant No. 62103136, the Henan Provincial Higher Education Youth Backbone Teacher Training Program under grant No. 2023GGJS065, the Henan Provincial Science and Technology Research Project under grant No. 242102210129
  • From a dual perspective of the sparse representation model, Nam et al. proposed the cosparse analysis model. In this paper, we aim to investigate the convergence of the alternating direction method of multipliers (ADMM) for the cosparse optimization problem. First, we examine the variational inequality representation of the cosparse optimization problem by introducing auxiliary variables. Second, ADMM is used to solve cosparse optimization problem. Finally, by utilizing a tight frame with a uniform row norm and building upon lemmas and the strict contraction theorem, we establish a worst-case $\mathcal{O}(1/t)$ convergence rate in the ergodic sense. The experimental results verify the practicability and convergence of the ADMM in solving cosparse optimization problems.

    MSC: 90C25
  • 加载中
  • [1] M. V. Afonso, J. M. Bioucas-Dias and M. A. T. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 2010, 19(9), 2345–2356. doi: 10.1109/TIP.2010.2047910

    CrossRef Google Scholar

    [2] M. M. Alves, J. Eckstein, M. Geremia and J. G. Melo, Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms, Comput. Optim. Appl., 2020, 75, 389–422. doi: 10.1007/s10589-019-00165-y

    CrossRef Google Scholar

    [3] J. Bai, X. Chang, J. Li and F. Xu, Convergence revisit on generalized symmetric ADMM, Optim., 2021, 70, 149–168. doi: 10.1080/02331934.2019.1704754

    CrossRef Google Scholar

    [4] S. Boyd, N. Parikh, E. Chu, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 2011, 3(1), 1–122.

    Google Scholar

    [5] S. Boyd, N. Parikh, E. Chu, et al., Distributed optimization and statistical learning via alternating direction method of multipliers, in Found. Trends Mach. Learn., 2010, 3(1), 1–122. doi: 10.1561/2200000016

    CrossRef Google Scholar

    [6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U. K, Cambridge Univ. Press, 2004.

    Google Scholar

    [7] A. M. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 2009, 51, 34–81. doi: 10.1137/060657704

    CrossRef Google Scholar

    [8] E. J. Candés and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 2004, 51(12), 4203–4215.

    Google Scholar

    [9] A. L. Casanovas, G. Monaci, P. Vandergheynst and R. Gribonval, Blind audiovisual source separation based on sparse representations, IEEE Trans. Multimedia, 2010, 12(5), 358–371. doi: 10.1109/TMM.2010.2050650

    CrossRef Google Scholar

    [10] T. Chan and R. Glowinski, Finite Element Approximation and Iterative Solution of a Class of Mildly Non-Linear Elliptic Equations, Stanford: Computer Science Department, Stanford University, 1978.

    Google Scholar

    [11] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 2006, 52(4), 1289–1306. doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [12] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pacific J. Optim., 2015, 11, 619–644.

    Google Scholar

    [13] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Prcoessing, Springer Press, 2010.

    Google Scholar

    [14] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 2006, 15(12), 3736–3745. doi: 10.1109/TIP.2006.881969

    CrossRef Google Scholar

    [15] M. Elad, J. L. Starck, P. Querre and D. L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput. Harmon. Anal., 2005, 19(3), 340–358. doi: 10.1016/j.acha.2005.03.005

    CrossRef Google Scholar

    [16] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer, New York, 2013.

    Google Scholar

    [17] R. Giryes, S. Nam, M. Elad, et al., Greedy-like algorithms for the cosparse analysis model, Linear Algebra Appl., 2014, 441(15), 22–60.

    Google Scholar

    [18] V. K. Goyal, J. Kovacevic and J. A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal., 2001, 10(3), 203–233. doi: 10.1006/acha.2000.0340

    CrossRef Google Scholar

    [19] D.-R. Han, A survey on some recent developments of alternating direction method of multipliers, J. Oper. Res. Soc. China, 2022, 10, 1–52. doi: 10.1007/s40305-021-00368-3

    CrossRef Google Scholar

    [20] B. He, On the convergence properties of alternating direction method of multipliers, Numer. Math. J. Chin. Univ., (Chine. Ser.), 2017, 39, 81–96.

    Google Scholar

    [21] B. He, F. Ma and X. Yuan, Convergence study on the symmetric version of ADMM with large step sizes, SIAM J. Imaging sciences, 2016, 9(3), 1467–1501. doi: 10.1137/15M1044448

    CrossRef Google Scholar

    [22] B. He and X. Yuan, On the $O(1/n)$ convergence rate of the Douglas-Rachford alternating direction method, SIAM J. Numer. Anal, 2012, 130(3), 702–709.

    $O(1/n)$ convergence rate of the Douglas-Rachford alternating direction method" target="_blank">Google Scholar

    [23] S. Hu and Z. Huang, Alternating direction method for bi-quadratic programming, J. Glob. Optim., 2011, 51(3), 429–446. doi: 10.1007/s10898-010-9635-4

    CrossRef Google Scholar

    [24] Z. Huang, G. Lin and N. Xiu, Several developments of variational inequalities and complementarity problems, bilevel programming and MPEC, Oper. Res., 2014, 18(1), 113–133.

    Google Scholar

    [25] Z. Jia, G. Xue, X. Cai and D. Han, The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems, J. Ind. Manag. Optim., 2021, 17(4), 1943–1971. doi: 10.3934/jimo.2020053

    CrossRef Google Scholar

    [26] M. S. Kotzagiannidis and M. E. Davies, Analysis vs synthesis with structure - an investigation of union of subspace models on graphs, Appl. Comput. Harmon Anal., 2022, 60, 293–332. doi: 10.1016/j.acha.2022.03.002

    CrossRef Google Scholar

    [27] J. Li, Z. Liu and W. Li, The reweighed greedy analysis pursuit algorithm for the cosparse analysis model, IEEE. The 2015 11th International Conference on Natural Computation, 2015, 1018–1022.

    Google Scholar

    [28] D. Li and M. Xue, Bases and Frames in Banach Spaces, Science Press, Beijing, 2007. (in Chinese).

    Google Scholar

    [29] Z. Liu, J. Li, W. Li and P. Dai, A modified greedy analysis pursuit algorithm for the cosparse analysis model, Numer. Algor., 2017, 74, 867–887. doi: 10.1007/s11075-016-0174-z

    CrossRef Google Scholar

    [30] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, Academic Press, 2008.

    Google Scholar

    [31] I. Mishra and S. Jain, Soft computing based compressive sensing techniques in signal processing: A comprehensive review, J. Intell. Syst., 2021, 30, 312–326.

    Google Scholar

    [32] S. Nam, M. Davies, M. Elad and R. Gribonval, Cosparse analysis modeling-uniqueness and algorithms, in: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2011, Prague, Czech Republic, May, 2011, 5804–5807.

    Google Scholar

    [33] S. Nam, M. Davies, M. Elad and R. Gribonval, The cosparse analysis model and algorithms, Appl. Comput. Harmon. Anal., 2013, 34(1), 30–56. doi: 10.1016/j.acha.2012.03.006

    CrossRef Google Scholar

    [34] M. D. Plumbley, T. Blumensath, L. Daudet, et al., Sparse representations in audio and music: From coding to source separation, Proc. IEEE., 2010, 98(6), 995–1005. doi: 10.1109/JPROC.2009.2030345

    CrossRef Google Scholar

    [35] H. Song, X. Ren, Y. Lai and H. Meng, Sparse analysis recovery via iterative cosupport detection estimation, IEEE Access, 2021, 9, 38386–38395. doi: 10.1109/ACCESS.2021.3063798

    CrossRef Google Scholar

    [36] J. L. Starck, F. Murtagh and M. J. Fadili, Sparse Image and Signal Processing-Wavelets, Curvelets, Morphological Diversity, Cambridge University Press, 2010.

    Google Scholar

    [37] T. Tirer and R. Giryes, Generalizing CoSaMP to signals from a union of low dimensional linear subspaces, Appl. Comput. Harmon. Anal., 2020, 49(1), 99–122. doi: 10.1016/j.acha.2018.11.005

    CrossRef Google Scholar

    [38] Y. Tsaig and D. L. Donoho, Extensions of compressed sensing, Signal Processing, 2006, 86(3), 549–571. doi: 10.1016/j.sigpro.2005.05.029

    CrossRef Google Scholar

    [39] J. Xie, A. Liao and Y. Lei, A new accelerated alternating minimization method for analysis sparse recovery, Signal Process., 2018, 145, 167–174. doi: 10.1016/j.sigpro.2017.12.010

    CrossRef Google Scholar

    [40] T. Zhao, C. E. Yonina, B Amir and N. Arye, Smoothing and decomposition for analysis sparse recovery, IEEE Trans. Signal Process., 2014, 62(7), 1762–1774. doi: 10.1109/TSP.2014.2304932

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(648) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint