Citation: | Chirasak Mongkolkeha, Wutiphol Sintunavarat. ON LARGE S-SIMULATION FUNCTIONS AND LARGE $ \mathcal{Z}_S$-CONTRACTIONS WITH THE LINK TO PICARD MAPPINGS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3046-3060. doi: 10.11948/20220508 |
The main aim of this paper is to introduce new ideas, called large $s$-simulation functions and large $\mathcal{Z}_s$-contractions, which are inspired by the broad utility of applications of fixed point results for the enlarged class of nonlinear mappings. Illustrative examples supporting the new idea of large $s$-simulation functions are presented. Moreover, fixed point results for large $\mathcal{Z}_s$-contractions are investigated.
[1] | S. Banach, Sur les operations dans les ensembles abstrait et leur application aux equations integrals, Fund. Math., 1922, 3, 133–181. doi: 10.4064/fm-3-1-133-181 |
[2] | V. Berinde and M. Pacurar, The early developments in fixed point theory on b-metric spaces: A brief survey and some important related aspects, Carrpathian J. Math., 2022, 38(3), 523–538. doi: 10.37193/CJM.2022.03.01 |
[3] | M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 2010, 8(2), 367–377. |
[4] | M. Bota, A. Molnar and V. Csaba, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 2011, 12, 21–28. |
[5] | T. A. Burton, Integral equations, implicit relations and fixed points, Proc. Amer. Math. Soc., 1996, 124, 2383–2390. doi: 10.1090/S0002-9939-96-03533-2 |
[6] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1993, 1, 5–11. |
[7] | S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 1998, 46, 263–276. |
[8] | A. Dehiciy, M. B. Mesmouliz and E. Karapinar, On the fixed points of large-Kannan contraction mappings and applications, Applied Mathematics E-Notes, 2019, 19, 535–551. |
[9] | F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 2015, 29(6), 1189–1194. doi: 10.2298/FIL1506189K |
[10] | A. F. Roldán López de Hierro, E. Karapınar, C. Roldán López de Hierro and J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, Journal of Computational and Applied Mathematics, 2015, 275, 345–355. doi: 10.1016/j.cam.2014.07.011 |
[11] | K. Sawangsup and W. Sintunavarat, On solving nonlinear matrix equations in terms of b-simulation functions in b-metric spaces with numerical solutions, Computational and Applied Mathematics, 2018, 37, 5829–5843. doi: 10.1007/s40314-018-0664-9 |
[12] | W. Sintunavarat, Nonlinear integral equations with new admissibility types in b-metric spaces, Journal of Fixed Point Theory and Applications, 2016, 18(2), 397–416. doi: 10.1007/s11784-015-0276-6 |
[13] | W. Sintunavarat, Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2016, 110(2), 585–600. doi: 10.1007/s13398-015-0251-5 |
[14] | C. Suanoom, W. Khuangsatung and T. Bantaojai, On an open problem in complex valued rectangular b-metric spaces with an application, Science and Technology Asia, 2022, 27(2), 78–83. doi: 10.22517/23447214.24780 |
[15] | O. Yamaod and W. Sintunavarat, An approach to the existence and uniqueness of fixed point results in b-metric spaces via s-simulation functions, Journal of Fixed Point Theory and Applications, 2017, 19, 2819–2830. doi: 10.1007/s11784-017-0453-x |
The relation of various types of simulations.
The relation of classes of important generalized contraction mappings.
Comparative results of Picard iterations with initial points
Behavior of the Picard iteration with initial points