2025 Volume 15 Issue 1
Article Contents

Yan Xu, Hexin Zhu. DIRECTED SEARCH PROCESS DRIVEN BY LÉVY MOTION WITH STOCHASTIC RESETTING[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 137-159. doi: 10.11948/20230466
Citation: Yan Xu, Hexin Zhu. DIRECTED SEARCH PROCESS DRIVEN BY LÉVY MOTION WITH STOCHASTIC RESETTING[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 137-159. doi: 10.11948/20230466

DIRECTED SEARCH PROCESS DRIVEN BY LÉVY MOTION WITH STOCHASTIC RESETTING

  • In this paper, we demonstrate how certain active transport processes in living cells can be modeled based on a directed search process driven by Lévy motion with stochastic resetting. We focus on the motor-driven intracellular transport of vesicles to synaptic targets in the axons and dendrites of neurons, where the restart duration of the search process after reset is finite, and comprises a finite return time and a refractory period. We employ a probabilistic renewal method to calculate the splitting probabilities and conditional mean first passage times (MFPTs) for capture by a finite array of contiguous targets. We consider two different search scenarios: bounded search on the interval $ [0,L] $, where $ L $ denotes the length of the array, with a refractory boundary at $ x=0 $ and a reflecting boundary at $ x=L $ (Model A), and partially bounded search on the half-line (Model B). In the latter case, the probability that the particle cannot find a target in the absence of resetting is nonzero. We show that both models have the same splitting probability, and that increasing the resetting rate $ r $ increases the splitting probability. Furthermore, the MFPTs of Model A are monotonically increasing with respect to $ r $, whereas the MFPTs of Model B are nonmonotone with respect to $ r $, with a minimum at an optimal resetting rate.

    MSC: 34F05, 37H10, 35R60
  • 加载中
  • [1] F. Bartumeus and J. Catalan, Optimal Search Behaviour and Classic Foraging Theory, Journal of Physics A: Mathematical and Theoretical, 2009. DOI: 10.1088/1751-8113/42/43/434002.

    CrossRef Google Scholar

    [2] O. Bénichou, M. Coppey, M. Moreau, et al., Optimal Search Strategies for Hidden Targets, Physical Review Letters, 2005. DOI: 10.1103/PhysRevLett.94.198101.

    CrossRef Google Scholar

    [3] H. C. Berg, Random Walks in Biology, Princeton University Press, New York, 1993.

    Google Scholar

    [4] A. S. Bodrova, A. V. Chechkin and I. M. Sokolov, Nonrenewal resetting of scaled Brownian motion, Physical Review E, 2019, 100(1). DOI: 10.1103/PhysRevE.100.012119.

    CrossRef Google Scholar

    [5] A. S. Bodrova, A. V. Chechkin and I. M. Sokolov, Scaled Brownian Motion with Renewal Resetting, Physical Review E, 2019. DOI: 10.1103/PhysRevE.100.012120.

    CrossRef Google Scholar

    [6] P. C. Bressloff and H. Kim, Search-and-capture model of cytoneme-mediated morphogen gradient formation, Physical Review E, 2019, 99(5). DOI: 10.1103/PhysRevE.99.052401.

    CrossRef Google Scholar

    [7] M. Coppey, O. Bénichou, R. Voituriez and M. Moreau, Kinetics of target site localization of a protein on DNA: A stochastic approach, Biophysical Journal, 2004, 87(3), 1640-1649. doi: 10.1529/biophysj.104.045773

    CrossRef Google Scholar

    [8] M. R. Evans and S. N. Majumdar, Diffusion with stochastic resetting, Physical Review Letters, 2011, 106(16), DOI: 10.1103/PhysRevLett.106.160601.

    CrossRef Google Scholar

    [9] M. R. Evans, S. N. Majumdar and G. Schehr, Stochastic resetting and applications, Journal of Physics A: Mathematical and Theoretical, 2020, 53(19). DOI: 10.1088/1751-8121/ab7cfe.

    CrossRef Google Scholar

    [10] E. Gelenbe, Search in Unknown Random Environments, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2010. DOI: 10.1103/PhysRevE.82.061112.

    CrossRef Google Scholar

    [11] L. Kusmierz and E. Gudowska-Nowak, Optimal first-arrival times in Lévy flights with resetting, Physical Review E, 2015, 92(5). DOI: 10.1103/PhysRevE.92.052127.

    CrossRef Google Scholar

    [12] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, et al., First order transition for the optimal search time of Lévy flights with resetting, Physical Review Letters, 2014, 113(22). DOI: 10.1103/PhysRevLett.113.220602.

    CrossRef Google Scholar

    [13] M. A. Lomholt, K. Tal, R. Metzler, et al., Lévy strategies in intermittent search processes are advantageous, Proceedings of the National Academy of Sciences, 2008, 105(32), 11055-11059. doi: 10.1073/pnas.0803117105

    CrossRef Google Scholar

    [14] S. C. Manrubia and D. H. Zanette, Stochastic multiplicative processes with reset events, Physical Review E, 1999, 59(5), 4945-4948. doi: 10.1103/PhysRevE.59.4945

    CrossRef Google Scholar

    [15] V. Méndez and D. Campos, Characterization of stationary states in random walks with stochastic resetting, Physical Review E, 2016, 93(2). DOI: 10.1103/PhysRevE.93.022106.

    CrossRef Google Scholar

    [16] A. Montanari and R. Zecchina, Optimizing searches via rare events, Physical Review Letters, 2002, 88(17). DOI: 10.1103/PhysRevLett.88.178701.

    CrossRef Google Scholar

    [17] M. Montero and J. Villarroel, Continuous-time random walks with drift and stochastic reset events, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(1). DOI: 10.1103/PhysRevE.87.012116.

    CrossRef Google Scholar

    [18] S. Reuveni, M. Urbakh and J. Klafter, Role of substrate unbinding in Michaelis-Menten enzymatic reactions, PNAS, 2014, 111(12), 4391-4396. doi: 10.1073/pnas.1318122111

    CrossRef Google Scholar

    [19] T. Robin, S. Reuveni and M. Urbakh, Single-molecule theory of enzymatic inhibition, Nature Communications, 2018, 9(1), 779. DOI: 10.1038/s41467-018-02995-6.

    CrossRef Google Scholar

    [20] E. Roldán, A. Lisica, D. Sánchez-Taltavull, et al., Stochastic resetting in backtrack recovery by RNA polymerases with Riemann-Liouville fractional derivative, Physical Review E, 2016, 93(6). DOI: 10.1103/PhysRevE.93.062411.

    CrossRef Google Scholar

    [21] T. Rotbart, S. Reuveni and M. Urbakh, Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem, Physical Review E, 2015, 92(6). DOI: 10.1103/PhysRevE.92.060101.

    CrossRef Google Scholar

    [22] V. P. Shkilev, Continuous-time random walk under time-dependent resetting, Physical Review E, 2017, 96(1). DOI: 10.1103/PhysRevE.96.012126.

    CrossRef Google Scholar

    [23] X. Sun and J. Duan, Fokker-Planck equations for nonlinear dynamical systems driven by non-Gaussian Lévy processes, Journal of Mathematical Physics, 2012, 53(7), 164-172.

    Google Scholar

    [24] H. Zhu, G. ER, I. V. Pan, et al., PDE Solution to Nonlinear Stochastic Dynamic Systems Driven by Poisson White Noise, Proceedings of the 6th National Civil Engineering Graduate Academic Forum, 2008.

    Google Scholar

Figures(6)

Article Metrics

Article views(782) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint