2025 Volume 15 Issue 1
Article Contents

Bin Liu, Jing Hu, Libo Liu. FINITE TIME STABILITY AND OPTIMAL CONTROL OF A STOCHASTIC REACTION DIFFUSION ECHINOCOCCOSIS MODEL WITH IMPULSE AND TIME-VARYING DELAY[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 160-197. doi: 10.11948/20240021
Citation: Bin Liu, Jing Hu, Libo Liu. FINITE TIME STABILITY AND OPTIMAL CONTROL OF A STOCHASTIC REACTION DIFFUSION ECHINOCOCCOSIS MODEL WITH IMPULSE AND TIME-VARYING DELAY[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 160-197. doi: 10.11948/20240021

FINITE TIME STABILITY AND OPTIMAL CONTROL OF A STOCHASTIC REACTION DIFFUSION ECHINOCOCCOSIS MODEL WITH IMPULSE AND TIME-VARYING DELAY

  • Author Bio: Email: lb410009885@126.com(B. Liu)
  • Corresponding authors: Email: hujing2002@hotmail.com(J. Hu);  Email: liulib@nxu.edu.cn(L. Liu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12301630), the Ningxia Science and Technology Innovation Leading Talents Funding Programme (No. 2022GKLRLX03) and the Full-time Introduction of High Level Talent Research Fund Project for Ningxia (No. 2023BSB03070)
  • This paper presents a model for echinococcosis which incorporates stochastic reaction diffusion, impulse, and time-varying delay. First, the existence and uniqueness of global positive solution is proved through the construction of a Lyapunov function. Then, by applying the bounded impulse interval method, several sufficient conditions for finite time stability (FTS) are obtained. Finally, from the angle of cost-benefit, the issue of optimal control of echinococcosis is presented with the aim of minimizing infection and controlling costs. The validity of the analytical results is verified by numerical simulations.

    MSC: 35R10, 37N35, 92D25
  • 加载中
  • [1] R. Azlaf, A. Dakkak, A. Chentou and M. Berrahmani, Modelling the transmission of echinococcus grataulosus in dogs in the northwest and in the southwest of Morocco, Vet. Parasitol., 2007, 145, 297-303. doi: 10.1016/j.vetpar.2006.12.014

    CrossRef Google Scholar

    [2] I. A. Baba, R. A. Abdulkadir and P. Esmaili, Analysis of tuberculosis model with saturated incidence rate and optimal control, Physica A, 2020, 123237, 540.

    Google Scholar

    [3] J. F. Banas and A. G. Vacroux, Optimal piecewise constant control of contitauous time systems with time-varying delay, Automatica, 1970, 6(6), 809-811. doi: 10.1016/0005-1098(70)90029-4

    CrossRef Google Scholar

    [4] P. A. Cabrera, G. Haran, U. Benavidez, S. Valledor, G. Perera, S. Lloyd, M. A. Gemmell, M. Baraibar, A. Morana, J. Maissonave and M. Carballo, Transmission dynamics of echinococcus grataulosus, taenia hydatigena and taenia ovis in sheep in Uruguay, Int. J. Parasitol., 1995, 25, 807-813. doi: 10.1016/0020-7519(94)00209-7

    CrossRef Google Scholar

    [5] J. Chai, Epidemiological studies on cystic echinococcosis in China-a review, Biomed. Environ. Sci., 1995, 8, 122-136.

    Google Scholar

    [6] K. Chu, Multiple Pulmonary Hydatid Disease in Left Lung: Report of a Case, in: A Collection of Abstracts of Papers Presented at the Second National Symposium on Hydatidosis, Urumqi, China, 1992.

    Google Scholar

    [7] M. A. Gemmell, J. R. Lawson and M. G. Roberts, Population dynamics in echinococcosis and cysticercosis: Evaluation of the biological parameters of taenia hydatigena and T. ovis and comparison with those of echinococcus grataulosus, Parasitology, 1987, 94, 161-180. doi: 10.1017/S0031182000053543

    CrossRef Google Scholar

    [8] A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, Siam. J. Appl. Math., 2011, 71(3), 876-902. doi: 10.1137/10081856X

    CrossRef Google Scholar

    [9] M. L. Greer, L. Pujomenjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theor. Biol., 2006, 242(3), 598-606. doi: 10.1016/j.jtbi.2006.04.010

    CrossRef Google Scholar

    [10] D. J. Higham, An algorithmic introduction to taumerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [11] J. Hu, Q. Zhang, M. B. Anke and M. Ye, Finite-time stability and optimal control of a stochastic reaction-diffusion model for Alzheimer's disease with impulse and time-varying delay, Applied Mathematical Modelling., 2022, 102, 511-539. doi: 10.1016/j.apm.2021.10.004

    CrossRef Google Scholar

    [12] L. Huang, Y. Huang, Q. Wang, N. Xiao, D. Yi, W. Yu and D. Qiu, An agent-based model for control strategies of echinococcus grataulosus, Vet. Parasitol., 2011, 179(1-3), 84-91. doi: 10.1016/j.vetpar.2011.01.047

    CrossRef Google Scholar

    [13] S. Lahmar, H. Debbek, L. H. Zhang, D. P. McMataus, A. Souissi, S. Chelly and P. R. Torgerson, Transmission dynamics of the echinococcus grataulosus sheepšCdog strain(G1 genotype) in camels in Tunisia, Vet. Parasitol., 2004, 121, 151-156. doi: 10.1016/j.vetpar.2004.02.016

    CrossRef Google Scholar

    [14] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, John Chapman and Hall, 2007.

    Google Scholar

    [15] J. Liu, L. Liu, X. Fang and J. Fang, Global dynamics of a time-delayed echinococcosis transmission model, Adv. Differ. Equations, 2015, (2015), 1-16.

    Google Scholar

    [16] J. Lu, D. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 2010, 46(7), 1215-1221. doi: 10.1016/j.automatica.2010.04.005

    CrossRef Google Scholar

    [17] T. Pan, D. Jiang, H. Tasawar and A. Ahmed, Extinction and periodic solutions for an impulsive SIR model with incidence rate stochastically perturbed, Physica A, 2018, 505, 385-397. doi: 10.1016/j.physa.2018.03.012

    CrossRef Google Scholar

    [18] S. Portet and J. Arino, An in vivo intermediate filament assembly model, Mathematical Biosciences Engineering, 2008, 6(1), 117-134.

    Google Scholar

    [19] M. G. Roberts, J. R. Lawson and M. A. Gemmell, Population dynamics in echinococcosis and cysticercosis: Mathematical model of the life-cycles of taenia hydatigena and T. ovis. Parasitology, 1987, 94, 181-197.

    Google Scholar

    [20] P. R. Torgerson, I. Ziadinov, D. Aknazarov, R. Taurgaziev and P. Deplazes, Modelling the age variation of larval protoscoleces of echinococcus grataulosus in sheep, Int. J. Parasitol., 2009, 39, 1031-1035. doi: 10.1016/j.ijpara.2009.01.004

    CrossRef Google Scholar

    [21] E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Physica. A, 2005, 354, 111-126. doi: 10.1016/j.physa.2005.02.057

    CrossRef Google Scholar

    [22] K. Wang, K. Zhang, Z. Jin, et al., Modeling and analysis of the transmission of echinococcosis with application to Xinjiang Uygur autonomous region of China, J. Theor. Biol., 2013, 333, 78-90. doi: 10.1016/j.jtbi.2013.04.020

    CrossRef Google Scholar

    [23] Z. Wang, X. Wang and X. Liu, Echinococcos is in China, a review of the epidemiology of echinococcus spp. EcoHealth, 2008, 5, 115-126.

    Google Scholar

    [24] K. Wu and B. Chen, Synchronization of partial differential systems via diffusion coupling, IEEE Trans. Circuits Syst. I Regul. Pap., 2012, 59(11), 2655-2668. doi: 10.1109/TCSI.2012.2190670

    CrossRef Google Scholar

    [25] K. Wu, M. Na, L. Wang, X. Ding and B. Wu, Finite-time stability of implusive reaction-diffusion systems with and without time delay, Applied Mathematucs and Computatuin., 2019, 363, 124591. doi: 10.1016/j.amc.2019.124591

    CrossRef Google Scholar

    [26] Z. Xu and C. Ai, A spatial echinococcosis transmission model with time delays: Stability and traveling waves, Int. J. Biomath., 2017, 10, 1-32.

    Google Scholar

    [27] Y. Zhang and Y. Xiao, Modeling and analyzing the effects of fixed-time intervention on transmission dynamics of echinococcosis in Qinghai province, Math. Meth. Appl. Sci., 2020, 2020, 1-21.

    Google Scholar

    [28] W. Zhu, Progress and Present Status of Hydatid Disease Control in China in the Recent Eight Decades, in: Hami Prefectural Institute of Scientific and Technological Information, Hami, China, 1985.

    Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(769) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint