Citation: | Bin Liu, Jing Hu, Libo Liu. FINITE TIME STABILITY AND OPTIMAL CONTROL OF A STOCHASTIC REACTION DIFFUSION ECHINOCOCCOSIS MODEL WITH IMPULSE AND TIME-VARYING DELAY[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 160-197. doi: 10.11948/20240021 |
This paper presents a model for echinococcosis which incorporates stochastic reaction diffusion, impulse, and time-varying delay. First, the existence and uniqueness of global positive solution is proved through the construction of a Lyapunov function. Then, by applying the bounded impulse interval method, several sufficient conditions for finite time stability (FTS) are obtained. Finally, from the angle of cost-benefit, the issue of optimal control of echinococcosis is presented with the aim of minimizing infection and controlling costs. The validity of the analytical results is verified by numerical simulations.
[1] | R. Azlaf, A. Dakkak, A. Chentou and M. Berrahmani, Modelling the transmission of echinococcus grataulosus in dogs in the northwest and in the southwest of Morocco, Vet. Parasitol., 2007, 145, 297-303. doi: 10.1016/j.vetpar.2006.12.014 |
[2] | I. A. Baba, R. A. Abdulkadir and P. Esmaili, Analysis of tuberculosis model with saturated incidence rate and optimal control, Physica A, 2020, 123237, 540. |
[3] | J. F. Banas and A. G. Vacroux, Optimal piecewise constant control of contitauous time systems with time-varying delay, Automatica, 1970, 6(6), 809-811. doi: 10.1016/0005-1098(70)90029-4 |
[4] | P. A. Cabrera, G. Haran, U. Benavidez, S. Valledor, G. Perera, S. Lloyd, M. A. Gemmell, M. Baraibar, A. Morana, J. Maissonave and M. Carballo, Transmission dynamics of echinococcus grataulosus, taenia hydatigena and taenia ovis in sheep in Uruguay, Int. J. Parasitol., 1995, 25, 807-813. doi: 10.1016/0020-7519(94)00209-7 |
[5] | J. Chai, Epidemiological studies on cystic echinococcosis in China-a review, Biomed. Environ. Sci., 1995, 8, 122-136. |
[6] | K. Chu, Multiple Pulmonary Hydatid Disease in Left Lung: Report of a Case, in: A Collection of Abstracts of Papers Presented at the Second National Symposium on Hydatidosis, Urumqi, China, 1992. |
[7] | M. A. Gemmell, J. R. Lawson and M. G. Roberts, Population dynamics in echinococcosis and cysticercosis: Evaluation of the biological parameters of taenia hydatigena and T. ovis and comparison with those of echinococcus grataulosus, Parasitology, 1987, 94, 161-180. doi: 10.1017/S0031182000053543 |
[8] | A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, Siam. J. Appl. Math., 2011, 71(3), 876-902. doi: 10.1137/10081856X |
[9] | M. L. Greer, L. Pujomenjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theor. Biol., 2006, 242(3), 598-606. doi: 10.1016/j.jtbi.2006.04.010 |
[10] | D. J. Higham, An algorithmic introduction to taumerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525-546. doi: 10.1137/S0036144500378302 |
[11] | J. Hu, Q. Zhang, M. B. Anke and M. Ye, Finite-time stability and optimal control of a stochastic reaction-diffusion model for Alzheimer's disease with impulse and time-varying delay, Applied Mathematical Modelling., 2022, 102, 511-539. doi: 10.1016/j.apm.2021.10.004 |
[12] | L. Huang, Y. Huang, Q. Wang, N. Xiao, D. Yi, W. Yu and D. Qiu, An agent-based model for control strategies of echinococcus grataulosus, Vet. Parasitol., 2011, 179(1-3), 84-91. doi: 10.1016/j.vetpar.2011.01.047 |
[13] | S. Lahmar, H. Debbek, L. H. Zhang, D. P. McMataus, A. Souissi, S. Chelly and P. R. Torgerson, Transmission dynamics of the echinococcus grataulosus sheepšCdog strain(G1 genotype) in camels in Tunisia, Vet. Parasitol., 2004, 121, 151-156. doi: 10.1016/j.vetpar.2004.02.016 |
[14] | S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, John Chapman and Hall, 2007. |
[15] | J. Liu, L. Liu, X. Fang and J. Fang, Global dynamics of a time-delayed echinococcosis transmission model, Adv. Differ. Equations, 2015, (2015), 1-16. |
[16] | J. Lu, D. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 2010, 46(7), 1215-1221. doi: 10.1016/j.automatica.2010.04.005 |
[17] | T. Pan, D. Jiang, H. Tasawar and A. Ahmed, Extinction and periodic solutions for an impulsive SIR model with incidence rate stochastically perturbed, Physica A, 2018, 505, 385-397. doi: 10.1016/j.physa.2018.03.012 |
[18] | S. Portet and J. Arino, An in vivo intermediate filament assembly model, Mathematical Biosciences Engineering, 2008, 6(1), 117-134. |
[19] | M. G. Roberts, J. R. Lawson and M. A. Gemmell, Population dynamics in echinococcosis and cysticercosis: Mathematical model of the life-cycles of taenia hydatigena and T. ovis. Parasitology, 1987, 94, 181-197. |
[20] | P. R. Torgerson, I. Ziadinov, D. Aknazarov, R. Taurgaziev and P. Deplazes, Modelling the age variation of larval protoscoleces of echinococcus grataulosus in sheep, Int. J. Parasitol., 2009, 39, 1031-1035. doi: 10.1016/j.ijpara.2009.01.004 |
[21] | E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Physica. A, 2005, 354, 111-126. doi: 10.1016/j.physa.2005.02.057 |
[22] | K. Wang, K. Zhang, Z. Jin, et al., Modeling and analysis of the transmission of echinococcosis with application to Xinjiang Uygur autonomous region of China, J. Theor. Biol., 2013, 333, 78-90. doi: 10.1016/j.jtbi.2013.04.020 |
[23] | Z. Wang, X. Wang and X. Liu, Echinococcos is in China, a review of the epidemiology of echinococcus spp. EcoHealth, 2008, 5, 115-126. |
[24] | K. Wu and B. Chen, Synchronization of partial differential systems via diffusion coupling, IEEE Trans. Circuits Syst. I Regul. Pap., 2012, 59(11), 2655-2668. doi: 10.1109/TCSI.2012.2190670 |
[25] | K. Wu, M. Na, L. Wang, X. Ding and B. Wu, Finite-time stability of implusive reaction-diffusion systems with and without time delay, Applied Mathematucs and Computatuin., 2019, 363, 124591. doi: 10.1016/j.amc.2019.124591 |
[26] | Z. Xu and C. Ai, A spatial echinococcosis transmission model with time delays: Stability and traveling waves, Int. J. Biomath., 2017, 10, 1-32. |
[27] | Y. Zhang and Y. Xiao, Modeling and analyzing the effects of fixed-time intervention on transmission dynamics of echinococcosis in Qinghai province, Math. Meth. Appl. Sci., 2020, 2020, 1-21. |
[28] | W. Zhu, Progress and Present Status of Hydatid Disease Control in China in the Recent Eight Decades, in: Hami Prefectural Institute of Scientific and Technological Information, Hami, China, 1985. |
The state trajectories of
The System (2.5) displays state trajectories for
The System (2.5) displays state trajectories for
The System (2.5) displays state trajectories for
The trajectories of
The paths of