2025 Volume 15 Issue 1
Article Contents

Fan Yang, Lu-Lu Yan, Hao Liu, Xiao-Xiao Li. TWO REGULARIZATION METHODS FOR IDENTIFYING THE UNKNOWN SOURCE OF SOBOLEV EQUATION WITH FRACTIONAL LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 198-225. doi: 10.11948/20240065
Citation: Fan Yang, Lu-Lu Yan, Hao Liu, Xiao-Xiao Li. TWO REGULARIZATION METHODS FOR IDENTIFYING THE UNKNOWN SOURCE OF SOBOLEV EQUATION WITH FRACTIONAL LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 198-225. doi: 10.11948/20240065

TWO REGULARIZATION METHODS FOR IDENTIFYING THE UNKNOWN SOURCE OF SOBOLEV EQUATION WITH FRACTIONAL LAPLACIAN

  • In this paper, an inverse source problem for the Sobolev equation with fractional Laplacian is investigated. We prove that this kind of problem is ill-posed and apply the Quasi-boundary regularization method and fractional Landweber iterative regularization method to solve this inverse problem. Based on the result of conditional stability, the error estimates between the exact solution and the regularization solution are given under the priori and posteriori regularization parameter selection rules. Finally, three examples are given to illustrate the effectiveness and feasibility of these methods.

    MSC: 35R25, 47A52, 35R30
  • 加载中
  • [1] H. M. Ahmed, M. M. El-Borai, H. M. El-Owaidy and A. S. Ghanem, Existence solution and controllability of Sobolev type delay nonlinear fractional integro-differential system, Mathematics, 2019, 7(1), 79. doi: 10.3390/math7010079

    CrossRef Google Scholar

    [2] J. Banasiak, N. A. Manakova and G. A. Sviridyuk, Positive solutions to Sobolev type equations with relatively p-sectorial operators, Bull. South Ural. State Univ. Ser. Math. Model. Program., 2020, 13(2), 17–32.

    Google Scholar

    [3] G. I. Barenblatt, Y. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math., 1960, 24(5), 1286–1303.

    Google Scholar

    [4] M. K. Beshtokov, Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative, Comput. Math. Math. Phys., 2019, 59(2), 175–192. doi: 10.1134/S0965542519020052

    CrossRef Google Scholar

    [5] A. Favini, G. Sviridyuk and M. Sagadeeva, Linear Sobolev type equations with relatively p-radial operators in space of "noises", Mediterr. J. Math., 2016, 13(6), 4607–4621. doi: 10.1007/s00009-016-0765-x

    CrossRef Google Scholar

    [6] K. M. Gamzaev, Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall, Bull. South Ural State Univ. Ser. Math. Mech. Phys., 2020, 12(1), 24–30.

    Google Scholar

    [7] Y. Gao, D. Li, F. Yang and X. Li, Fractional Landweber iterative regularization method for solving the inverse problem of time-fractional Schrödinger equation, Symmetry, 2022, 14(10), 2010. doi: 10.3390/sym14102010

    CrossRef Google Scholar

    [8] M. O. Korpusov, A. A. Panin and A. E. Shishkov, On the critical exponent 'instantaneous blow-up' versus 'local solubility' in the Cauchy problem for a model equation of Sobolev type, Izv. Math., 2021, 85(1), 111–144. doi: 10.1070/IM8949

    CrossRef Google Scholar

    [9] Y. S. Li and T. Wei, An inverse time-dependent source problem for a time-space fractional diffusion equation, Appl. Math. Comput., 2018, 336, 257–271.

    Google Scholar

    [10] F. W. Liu, V. V. Anh, I. Turner and P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comput., 2003, 13(1), 233–245.

    Google Scholar

    [11] D. Mehdi, S. Nasim and A. Mostafa, Application of spectral element method for solving Sobolev equations with error estimation, Appl. Numer. Math., 2020, 158, 439–462. doi: 10.1016/j.apnum.2020.08.010

    CrossRef Google Scholar

    [12] M. T. Mohan, On the three dimensional Kelvin-Voigt fluids: Global solvability, exponential stability and exact controllability of Galerkin approximations, Evol. Equ. Control The., 2020, 9(2), 301–339. doi: 10.3934/eect.2020007

    CrossRef Google Scholar

    [13] A. C. Natalí and S. Analía, Three solutions for a nonlocal problem with critical growth, J. Math. Anal. Appl., 2019, 469(2), 841–851. doi: 10.1016/j.jmaa.2018.09.038

    CrossRef Google Scholar

    [14] D. P. Nguyen, T. N. Van and L. LeDinh, Inverse source problem for Sobolev equation with fractional Laplacian, J. Funct. Space., 2022, 2022(1), 1–12.

    Google Scholar

    [15] D. E. Shafranov, On numerical solution in the space of differential forms for one stochastic Sobolev-type equation with a relatively radial operator, J. Comput. Eng. Math., 2020, 7(4), 48–55. doi: 10.14529/jcem200405

    CrossRef Google Scholar

    [16] D. E. Shafranov and N. V. Adukova, Solvability of the Showalter-Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace-Beltrami operator on differential forms, J. Comput. Eng. Math., 2017, 4(3), 27–34. doi: 10.14529/jcem170304

    CrossRef Google Scholar

    [17] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, Math. Comput., 1977, 32(144), 491–491.

    Google Scholar

    [18] M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE T. Med. Imaging, 1998, 17(2), 285–293. doi: 10.1109/42.700740

    CrossRef Google Scholar

    [19] J. Wang, On a nonlocal problem with critical Sobolev growth, Appl. Math. Lett., 2020, 99, 105959. doi: 10.1016/j.aml.2019.06.030

    CrossRef Google Scholar

    [20] T. Wei and Y. S. Li, Identifying a diffusion coefficient in a time-fractional diffusion equation, Math. Comput. Simulat., 2018, 151, 77–95.

    Google Scholar

    [21] X. T. Xiong, X. M. Xue and Z. Qian, A modified iterative regularization method for ill-posed problems, Appl. Numer. Math., 2017, 122(1), 108–128.

    Google Scholar

    [22] X. T. Xiong, L. Zhao and Y. C. Hon, Stability estimate and the modified regularization method for a Cauchy problem of the fractional diffusion equation, J. Comput. Appl. Math., 2014, 272, 180–194.

    Google Scholar

    [23] F. Yang, H. Wu and X. Li, Three regularization methods for identifying the initial value of homogeneous anomalous secondary diffusion equation, Math. Method. Appl. Sci., 2021, 44(17), 13723–13755.

    Google Scholar

    [24] F. Yang, H. Wu and X. Li, Three regularization methods for identifying the initial value of time fractional advection-dispersion equation, Comput. Appl. Math., 2022, 41(1), 1–38.

    Google Scholar

    [25] F. Yang, J. M. Xu and X. X. Li, Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation, Calcolo, 2022, 59(4), 47.

    Google Scholar

    [26] A. A. Zamyshlyaeva and E. V. Bychkov, The Cauchy problem for the Sobolev type equation of higher order, Bull. South Ural State Univ. Ser. Math. Model. Program., 2018, 11(1), 5–14.

    Google Scholar

    [27] A. A. Zamyshlyaeva and A. V. Lut, Inverse problem for sobolev type mathematical models, Bull. South Ural State Univ. Ser. Math. Model. Program., 2019, 12(2), 25–36.

    Google Scholar

    [28] Z. Z. Zhang, W. H. Deng and H. T. Fan, Finite difference schemes for the tempered fractional Laplacian, Numer. Math. Theory Method. Appl., 2019, 12(2), 492–516.

    Google Scholar

Figures(6)

Article Metrics

Article views(901) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint