2025 Volume 15 Issue 1
Article Contents

Ali Akgül, Nourhane Attia. ENHANCING SOLUTIONS FOR NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS VIA COMBINED LAPLACE TRANSFORM AND REPRODUCING KERNEL METHOD[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 226-244. doi: 10.11948/20240078
Citation: Ali Akgül, Nourhane Attia. ENHANCING SOLUTIONS FOR NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS VIA COMBINED LAPLACE TRANSFORM AND REPRODUCING KERNEL METHOD[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 226-244. doi: 10.11948/20240078

ENHANCING SOLUTIONS FOR NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS VIA COMBINED LAPLACE TRANSFORM AND REPRODUCING KERNEL METHOD

  • Ordinary differential equations (ODEs) describe diverse phenomena in engineering and physics, such as electrical networks, oscillating systems, satellite orbits, and chemical reactions. Solving these equations, particularly the non-linear ones, is often challenging due to their complexity. This study aims to innovate by integrating the Laplace transform with the reproducing kernel Hilbert space method (RKHSM), introducing an enhanced approach that surpasses classical RKHSM. The combined Laplace-RKHSM method simplifies the original non-linear ODEs, allowing for the construction of novel numerical solutions. These solutions are systematically obtained in series form, providing both analytic and approximate results. The effectiveness and efficacy of the Laplace-RKHSM are demonstrated through three applications, each showcasing the method's superior performance in terms of accuracy and computational efficiency. This new approach not only enhances the existing RKHSM but also broadens its applicability to a wider range of non-linear problems in physics and engineering.

    MSC: 46E22, 34A08
  • 加载中
  • [1] O. Abu Arqub, J. Singh, B. Maayah and M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Meth. Appl. Sci., 2023, 46(7), 7965–7986. doi: 10.1002/mma.7305

    CrossRef Google Scholar

    [2] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solit. Fractals, 2018, 114, 478–482. doi: 10.1016/j.chaos.2018.07.032

    CrossRef Google Scholar

    [3] A. Akgül, A. Cordero and J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math. Meth. Appl. Sci., 2020, 43, 1349–1358. doi: 10.1002/mma.5950

    CrossRef Google Scholar

    [4] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional delay differential equations, App. Math. Comput., 2021, 400, 126095. doi: 10.1016/j.amc.2021.126095

    CrossRef Google Scholar

    [5] F. M. Allehiany, M. H. DarAssi, I. Ahmad, M. A. Khan and E. M. Tag-Eldin, Mathematical Modeling and backward bifurcation in monkeypox disease under real observed data, Results Phys., 2023, 20, 106557.

    Google Scholar

    [6] A. M. Alqahtani, M. Ould Sidi, M. R. Khan, M. A. Elkotb, E. Tag-Eldin and A. M. Galal, Transport properties of two-dimensional dissipative flow of hybrid nanofluid with Joule heating and thermal radiation, Sci. Rep., 2022, 12(1), 19374. doi: 10.1038/s41598-022-23337-z

    CrossRef Google Scholar

    [7] A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discrete Contin. Dyn. Syst. Ser. A, 2021, 14(10), 3441–3457.

    Google Scholar

    [8] N. Attia, A. Akgül, D. Seba and A. Nour, An efficient numerical technique for a biological population model of fractional order, Chaos Solit. Fractals, 2020, 141, 110349. doi: 10.1016/j.chaos.2020.110349

    CrossRef Google Scholar

    [9] A. Attia, A. Akgül, D. Seba and A. Nour, On solutions of time-fractional advection-diffusion equation, Numer. Methods Partial Differ. Equ., 2023, 39(6), 4489–4516. doi: 10.1002/num.22621

    CrossRef Google Scholar

    [10] B. Azarnavid, The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis, Comput. Appl. Math., 2022, 42(1), 8.

    Google Scholar

    [11] E. Babolian, S. Javadi and E. Moradi, RKM for solving Bratu-type differential equations of fractional order, Math. Meth. Appl. Sci., 2016, 39(6), 1548–1557. doi: 10.1002/mma.3588

    CrossRef Google Scholar

    [12] H. Beyrami and T. Lotfi, A novel method with error analysis for the numerical solution of a logarithmic singular Fredholm integral equation, Afr. Mat., 2023, 34(2), 33. doi: 10.1007/s13370-023-01073-5

    CrossRef Google Scholar

    [13] Y. Chellouf, B. Maayah, S. Momani, A. Alawneh and S. Alnabulsi, Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method, AIMS Math., 2021, 6(4), 3465–3485. doi: 10.3934/math.2021207

    CrossRef Google Scholar

    [14] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers, Inc, New York, 2009.

    Google Scholar

    [15] F. Z. Geng, Numerical methods for solving Schrödinger equations in complex reproducing kernel Hilbert spaces, Math. Sci., 2020, 14(4), 293–299. doi: 10.1007/s40096-020-00337-6

    CrossRef Google Scholar

    [16] F. Geng and M. Cui, New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions, J. Comput. Appl. Math., 2009, 233(2), 165–172. doi: 10.1016/j.cam.2009.07.007

    CrossRef Google Scholar

    [17] F. Geng and M. Cui, A reproducing kernel method for solving nonlocal fractional boundary value problems, Appl. Math. Lett., 2012, 25(5), 818–823. doi: 10.1016/j.aml.2011.10.025

    CrossRef Google Scholar

    [18] B. Ghanbari and A. Akgül, Abundant new analytical and approximate solutions to the generalized Schamel equation, Phys. Scr., 2020, 95(7), 075201. doi: 10.1088/1402-4896/ab8b27

    CrossRef Google Scholar

    [19] A. Ghasemi and A. Saadatmandi, A new Bernstein-reproducing kernel method for solving forced Duffing equations with integral boundary conditions, CMDE, 2024, 12(2), 329–337.

    Google Scholar

    [20] N. Harrouche, S. Momani, S. Hasan and M. Al-Smadi, Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative, Alex. Eng. J., 2021, 60(5), 4347–4362. doi: 10.1016/j.aej.2021.03.016

    CrossRef Google Scholar

    [21] F. Hemati, M. Ghasemi and G. R. Khoshsiar, Numerical solution of the multiterm time-fractional diffusion equation based on reproducing kernel theory, Numer. Methods Partial Differ. Equ., 2021, 37(1), 44–68. doi: 10.1002/num.22518

    CrossRef Google Scholar

    [22] S. M. E. Ismaeel, Abdul-Majid Wazwaz, E. Tag-Eldin and S. A. El-Tantawy, Simulation studies on the dissipative modified Kawahara solitons in a complex plasma, Symmetry, 2023, 15(1), 57.

    Google Scholar

    [23] W. Jiang and T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model., 2015, 39(16), 4871–4876. doi: 10.1016/j.apm.2015.03.053

    CrossRef Google Scholar

    [24] M. Modanli and A. Akgül, On solutions to the second-order partial differential equations by two accurate methods, Numer. Methods Partial Differ. Equ., 2018, 34(5), 1678–1692. doi: 10.1002/num.22223

    CrossRef Google Scholar

    [25] S. Momani, N. Djeddi, M. Al-Smadi and S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Numer. Math., 2021, 170, 418–434. doi: 10.1016/j.apnum.2021.08.005

    CrossRef Google Scholar

    [26] M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equation, J. Comput. Appl. Math., 2017, 309, 163–174. doi: 10.1016/j.cam.2016.06.029

    CrossRef Google Scholar

    [27] M. G. Sakar, O. Saldır and A. Akgül, A novel technique for fractional Bagley-Torvik equation, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2019, 89, 539–545. doi: 10.1007/s40010-018-0488-4

    CrossRef Google Scholar

    [28] S. A. A. Shah, N. A. Ahammad, B. Ali, K. Guedri, Aziz Ullah Awan, F. Gamaoun and E. M. Tag-ElDin, Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder, Int. Commun. Heat Mass Transf., 2022, 137, 106299. doi: 10.1016/j.icheatmasstransfer.2022.106299

    CrossRef Google Scholar

    [29] L. Shi, S. Tayebi, O. Abu Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, M. Abdel-Aty and M. Alhodaly, The novel cubic B-spline method for fractional Painlevé and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense, Alex. Eng. J., 2023, 65, 413–426. doi: 10.1016/j.aej.2022.09.039

    CrossRef Google Scholar

    [30] A. Tassaddiq, S. Qureshi, A. Soomro, O. Abu Arqub and M. Senol, Comparative analysis of classical and Caputo models for COVID-19 spread: Vaccination and stability assessment, Fixed Point Theory Algorithms Sci. Eng., 2024, 2024(2).

    Google Scholar

    [31] S. Zaremba, Sur le calcul numérique des fonctions demandées dans le problème de Dirichlet et le problème hydrodynamique, Bulletin International de l'Académie des Sciences de Cracovie, 1908, 68, 125–195.

    Google Scholar

Figures(15)  /  Tables(3)

Article Metrics

Article views(729) PDF downloads(534) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint