2024 Volume 14 Issue 6
Article Contents

Juan Zhang, Xiaonv Liang. FURTHER RESULTS OF M-EIGENVALUE LOCALIZATION THEOREM FOR FOURTH-ORDER PARTIALLY SYMMETRIC TENSORS AND THEIR APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3134-3161. doi: 10.11948/20230477
Citation: Juan Zhang, Xiaonv Liang. FURTHER RESULTS OF M-EIGENVALUE LOCALIZATION THEOREM FOR FOURTH-ORDER PARTIALLY SYMMETRIC TENSORS AND THEIR APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3134-3161. doi: 10.11948/20230477

FURTHER RESULTS OF M-EIGENVALUE LOCALIZATION THEOREM FOR FOURTH-ORDER PARTIALLY SYMMETRIC TENSORS AND THEIR APPLICATIONS

  • In this paper, we give some new M-eigenvalue inclusion theorems for fourth-order partially symmetric tensors, which are more tighter than some existing inclusion sets. On the basis, some new upper bounds of the M-spectral radius are presented. Further, as applications, we propose sufficient conditions for the strong ellipticity condition in the elastic materials. Numerical examples are shown to illustrate validity and superiority of our results.

    MSC: 15A69,15A72
  • 加载中
  • [1] E. Azroul, A. Benkirane and M. Srati, Eigenvalue problem associated with nonhomogeneous integro-differential operators: Eigenvalue problem, Journal of Elliptic and Parabolic Equations, 2021, 7, 47–64. doi: 10.1007/s41808-020-00092-8

    CrossRef Google Scholar

    [2] H. Che, H. Chen and Y. Wang, On the m-eigenvalue estimation of fourth-order partially symmetric tensors, Journal of Industrial and Management Optimization, 2018, 16(1), 309–324.

    Google Scholar

    [3] H. Che, H. Chen and Y. Wang, M-positive semi-definiteness and m-positive definiteness of fourth-order partially symmetric cauchy tensors, Journal of Inequalities and Applications, 2019, 2019(1), 1–18. doi: 10.1186/s13660-019-1955-4

    CrossRef Google Scholar

    [4] S. Chiriţǎ, A. Danescu and M. Ciarletta, On the strong ellipticity of the anisotropic linearly elastic materials, Journal of Elasticity, 2007, 87(1), 1–27. doi: 10.1007/s10659-006-9096-7

    CrossRef Google Scholar

    [5] A. Cuyt, N. Flamand and F. Knaepkens, On the conditioning of some structured generalized eigenvalue problems, Maple Transactions, 2023, 3(3).

    Google Scholar

    [6] G. Dahl, J. M. Leinaas, J. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear algebra and its applications, 2007, 420(2–3), 711–725. doi: 10.1016/j.laa.2006.08.026

    CrossRef Google Scholar

    [7] A. C. Doherty, P. A. Parrilo and F. M. Spedalieri, Distinguishing separable and entangled states, Physical Review Letters, 2002, 88(18), 187904. doi: 10.1103/PhysRevLett.88.187904

    CrossRef Google Scholar

    [8] M. Farcaseanu, A. Grecu, M. Mihailescu and D. Stancu-Dumitru, Perturbed eigenvalue problems: An overview, Studia Univ., Babes-Bolyai Math, 2021, 66, 55–73. doi: 10.24193/subbmath.2021.1.05

    CrossRef Google Scholar

    [9] L. Gurvits, Classical deterministic complexity of edmonds' problem and quantum entanglement, in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, 2003, 10–19.

    Google Scholar

    [10] D. Han, H.-H. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, Journal of Elasticity, 2009, 97, 1–13. doi: 10.1007/s10659-009-9205-5

    CrossRef Google Scholar

    [11] J. He, C. Li and Y. Wei, M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity, Applied Mathematics Letters, 2020, 102, 106137. doi: 10.1016/j.aml.2019.106137

    CrossRef Google Scholar

    [12] J. He, Y. Liu and G. Xu, New s-type inclusion theorems for the m-eigenvalues of a 4th-order partially symmetric tensor with applications, Applied Mathematics and Computation, 2021, 398, 125992. doi: 10.1016/j.amc.2021.125992

    CrossRef Google Scholar

    [13] S. Herschenfeld and P. D. Hislop, Local eigenvalue statistics for higher-rank anderson models after dietlein-elgart, arXiv preprint arXiv: 2208.03598, 2022.

    Google Scholar

    [14] C. J. Hillar and L.-H. Lim, Most tensor problems are np-hard, Journal of the ACM (JACM), 2013, 60(6), 1–39.

    Google Scholar

    [15] Z.-H. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, Journal of Computational and Applied Mathematics, 2018, 338, 22–43. doi: 10.1016/j.cam.2018.01.025

    CrossRef Google Scholar

    [16] B. Jiang, Polynomial Optimization: Structures, Algorithms, and Engineering Applications, University of Minnesota, 2013.

    Google Scholar

    [17] J. K. Knowles and E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, Journal of Elasticity, 1975, 5(3–4), 341–361. doi: 10.1007/BF00126996

    CrossRef Google Scholar

    [18] S. Li, C. Li and Y. Li, M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor, Journal of Computational and Applied Mathematics, 2019, 356, 391–401. doi: 10.1016/j.cam.2019.01.013

    CrossRef Google Scholar

    [19] C. Ling, J. Nie, L. Qi and Y. Ye, Biquadratic optimization over unit spheres and semidefinite programming relaxations, SIAM Journal on Optimization, 2010, 20(3), 1286–1310. doi: 10.1137/080729104

    CrossRef Google Scholar

    [20] E. Mikhailov and M. Pashentseva, Eigenvalue problem for a reduced dynamo model in thick astrophysical discs, Mathematics, 2023, 11(14), 3106. doi: 10.3390/math11143106

    CrossRef Google Scholar

    [21] L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and their Applications, 39, Springer, 2018.

    Google Scholar

    [22] L. Qi, H.-H. Dai and D. Han, Conditions for strong ellipticity and m-eigenvalues, Frontiers of Mathematics in China, 2009, 4, 349–364. doi: 10.1007/s11464-009-0016-6

    CrossRef Google Scholar

    [23] L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.

    Google Scholar

    [24] H. Simpson, S. Spector and E. Sternberg, On copositive matrices and strong ellipticity for isotropic elastic materials, Archive for Rational Mechanics and Analysis, 1983, 84(1), 55–68. doi: 10.1007/BF00251549

    CrossRef Google Scholar

    [25] G. Wang, L. Sun, L. Liu, et al., M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, 2020, 2020.

    Google Scholar

    [26] Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, Journal of Elasticity, 1996, 44, 89–96. doi: 10.1007/BF00042193

    CrossRef Google Scholar

    [27] Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest m-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 2009, 16(7), 589–601. doi: 10.1002/nla.633

    CrossRef Google Scholar

    [28] S. Wright, J. Nocedal, et al., Numerical optimization, Springer Science, 1999, 35(67–68), 7.

    Google Scholar

    [29] H. Xiang, L. Qi and Y. Wei, On the m-eigenvalues of elasticity tensor and the strong ellipticity condition, arXiv preprint arXiv: 1708.04876, 2017.

    Google Scholar

    [30] H. Xiang, L. Qi and Y. Wei, M-eigenvalues of the riemann curvature tensor, arXiv preprint arXiv: 1802.10248, 2018.

    Google Scholar

    [31] L. Zee and E. Sternberg, Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids, Archive for Rational Mechanics and Analysis, 1983, 83(1), 53–90. doi: 10.1007/BF00281087

    CrossRef Google Scholar

    [32] X. Zhang, C. Ling and L. Qi, Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints, Journal of Global Optimization, 2011, 49(2), 293–311. doi: 10.1007/s10898-010-9545-5

    CrossRef Google Scholar

    [33] X. Zhang, et al., Polynomial Optimization and its Applications, 2010.

    Google Scholar

    [34] Y. Zhang, L. Sun and G. Wang, Sharp bounds on the minimum M-eigenvalue of elasticity M-tensors, Mathematics, 2020, 8(2), 250. doi: 10.3390/math8020250

    CrossRef Google Scholar

Figures(3)  /  Tables(2)

Article Metrics

Article views(691) PDF downloads(233) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint