Citation: | Wangjin Yao, Huiping Zhang. MULTIPLE SOLUTIONS FOR $ P $-LAPLACIAN KIRCHHOFF-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS WITH INSTANTANEOUS AND NON-INSTANTANEOUS IMPULSES[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 422-441. doi: 10.11948/20240118 |
In this paper, we consider a class of $ p $-Laplacian Kirchhoff-type fractional differential equations with instantaneous and non-instantaneous impulses. The existence of at least two distinct weak solutions and infinitely many weak solutions is obtained based on variational methods.
[1] | G. A. Afrouzi and A. Hadjian, A variational approach for boundary value problems for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2018, 21(6), 1565–1584. |
[2] | G. A. Afrouzi, S. Heidarkhani and S. Moradi, Multiple solutions for a Kirchhoff-type second-order impulsive differential equation on the half-line, Quaest. Math., 2022, 45(1), 109–141. |
[3] | R. Agarwal, D. O'Regan and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 2017, 53(1), 147–168. |
[4] | C. Z. Bai, Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance, J. Appl. Math. Comput., 2012, 39, 421–443. |
[5] | G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 2012, 1(3), 205–220. |
[6] | G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, 2009, 1–20. |
[7] | G. Bonanno, R. Rodríguez-López and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17, 717–744. |
[8] | G. Caristi, S. Heidarkhani and A. Salari, Variational approaches to Kirchhoff-type second-order impulsive differential equations on the half-line, Results Math., 2018, 73, 1–31. |
[9] | V. Colao, L. Muglia and H. Xu, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay, Ann. Mat. Pura Appl., 2016, 195(3), 697–716. |
[10] |
X. L. Fan, T. T. Xue and Y. S. Jiang, Dirichlet problems of fractional $p$-Laplacian equation with impulsive effects, Math. Biosci. Eng., 2023, 20(3), 5094–5116.
$p$-Laplacian equation with impulsive effects" target="_blank">Google Scholar |
[11] | J. R. Graef, S. Heidarkhani, L. J. Kong and S. Moradi, Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods, Math. Bohem., 2022, 147(1), 95–112. |
[12] | J. R. Graef, S. Heidarkhani, L. J. Kong and S. Moradi, Three solutions for impulsive fractional boundary value problems with $p$-Laplacian, Bull. Iran Math. Soc., 2022, 48(4), 1413–1433. |
[13] | S. Heidarkhani, G. A. Afrouzi and S. Moradi, Existence results for a Kirchhoff-type second-order differential equation on the half-line with impulses, Asymptotic Anal., 2017, 105(3–4), 137–158. |
[14] | S. Heidarkhani, A. Cabada, G. A. Afrouzi, et al., A variational approach to perturbed impulsive fractional differential equations, J. Comput. Appl. Math., 2018, 341, 42–60. |
[15] | S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Meth. Appl. Sci., 2020, 43(10), 6529–6541. |
[16] | S. Heidarkhani, A. Salari and G. Caristi, Infinitely many solutions for impulsive nonlinear fractional boundary value problems, Adv. Differ. Equ., 2016, 2016, 196. |
[17] | S. Heidarkhani, Y. L. Zhao, G. Caristi, et al., Infinitely many solutions for perturbed impulsive fractional differential systems, Appl. Anal., 2017, 96(8), 1401–1424. |
[18] | E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 2013, 141(5), 1641–1649. |
[19] | F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22(4), 1250086. |
[20] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, New York, 2006. |
[21] | G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig, 1883. |
[22] | D. P. Li, F. Q. Chen, Y. H. Wu and Y. K. An, Multiple solutions for a class of $p$-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 106, 106352. |
[23] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, 1989. |
[24] | V. D. Milman and A. D. Myshkis, On the stability of motion in the presence of impulses, Sibirian Math. J., 1960, 1(2), 233–237. |
[25] | Y. Qiao, F. Q. Chen and Y. K. An, Variational method for $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Math. Meth. Appl. Sci., 2021, 44(11), 8543–8553. |
[26] | R. Rodríguez-López and S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1016–1038. |
[27] | J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^{N}$, Lect. Notes Math., 1978, 665, 205–227. |
[28] | Y. Wang and L. X. Tian, Existence and multiplicity of solutions for $(p, q)$-Laplacian Kirchhoff-type fractional differential equations with impulses, Math. Meth. Appl. Sci., 2023, 46(13), 14177–14199. |
[29] | L. H. Zhang, J. J. Nieto and G. T. Wang, Extremal solutions for a nonlinear impulsive differential equations with multi-orders fractional derivatives, J. Appl. Anal. Comput., 2017, 7(3), 814–823. |
[30] | W. Zhang and W. B. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 99, 105993. |
[31] | W. Zhang and J. B. Ni, Study on a new $p$-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Solitons Fractals, 2023, 168, 113143. |
[32] | W. Zhang, Z. Y. Wang and J. B. Ni, Variational method to the fractional impulsive equation with Neumann boundary conditions, J. Appl. Anal. Comput., 2024, 14(5), 2890–2902. |
[33] | Y. L. Zhao, H. B. Chen and C. J. Xu, Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput., 2017, 307, 170–179. |
[34] | J. W. Zhou, Y. M. Deng and Y. N. Wang, Variational approach to $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 2020, 104, 106251. |