2025 Volume 15 Issue 3
Article Contents

Ali Ebadian, Choonkil Park. INTUITIONISTIC FUZZY STABILITY OF AN EULER-LAGRANGE TYPE QUARTIC FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1659-1673. doi: 10.11948/20240334
Citation: Ali Ebadian, Choonkil Park. INTUITIONISTIC FUZZY STABILITY OF AN EULER-LAGRANGE TYPE QUARTIC FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1659-1673. doi: 10.11948/20240334

INTUITIONISTIC FUZZY STABILITY OF AN EULER-LAGRANGE TYPE QUARTIC FUNCTIONAL EQUATION

  • In this paper, we investigate the Hyers-Ulam stability of the following Euler-Lagrange type quartic functional equation

    $\begin{array}{*{20}{c}}{f(ax+y)+f(x+ay)+\frac{1}{2}a(a-1)^{2}f(x-y)}\\{=(a^{2}-1)^{2}(f(x)+f(y))+\frac{1}{2}a(a+1)^{2}f(x+y)}\end{array}$

    in intuitionistic fuzzy normed spaces, where $a\neq 0, a\neq\pm1$. Furthermore, we investigate intuitionistic fuzzy continuity through the existence of a certain solution of a fuzzy stability problem for approximately Euler-Lagrange quartic functional equation.

    MSC: 39B82, 39B52, 46S40, 47S40, 54A40
  • 加载中
  • [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2, 245–251.

    Google Scholar

    [2] A. R. Aruldass, D. Pachaiyappan and C. Park, Kamal transform and Ulam stability of differential equations, J. Appl. Anal. Comput., 2021, 11(3), 1631–1639.

    Google Scholar

    [3] K. Atanassov, Intuitionistic fuzzy sets, Ⅶ ITKR'S, Session, Sofia, June 1983 (Deposed in Central Science-Technical Library of Bulg. Academy of Science, 1697/84)(in Bulgarian).

    Google Scholar

    [4] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math., 2003, 11, 687–705.

    Google Scholar

    [5] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst., 2005, 151, 513–547. doi: 10.1016/j.fss.2004.05.004

    CrossRef Google Scholar

    [6] R. Chaharpashlou and A. M. Lopes, Hyers-Ulam-Rassias stability of a nonlinear stochastic fractional Volterra integro-differential equation, J. Appl. Anal. Comput., 2023, 13(5), 2799–2808.

    Google Scholar

    [7] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 1994, 86, 429–436.

    Google Scholar

    [8] Iz. EL-Fassi, E. El-hady and W. Sintunavarat, Hyperstability results for generalized quadratic functional equations in $ (2, \alpha) $-Banach spaces, J. Appl. Anal. Comput., 2023, 13(5), 2596–2612.

    $ (2, \alpha) $-Banach spaces" target="_blank">Google Scholar

    [9] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 1992, 48, 239–248.

    Google Scholar

    [10] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of the approximately additive mappings, J. Math. Anal. Appl., 1994, 184, 431–436.

    Google Scholar

    [11] R. Ger, On alienation of two functional equations of quadratic type, Aequationes Math., 2021, 19, 1169–1180.

    Google Scholar

    [12] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27, 222–224.

    Google Scholar

    [13] K. Jun and H. Kim, On the stability of the Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl., 2007, 33, 1335–1350.

    Google Scholar

    [14] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 1984, 12, 1–7.

    Google Scholar

    [15] D. Kang, On the stability of gneralized quadratic mappings in quasi $ \beta $-normed space, J. Inequal. Appl., 2010, 2010, Article ID 198098.

    $ \beta $-normed space" target="_blank">Google Scholar

    [16] D. Kang, H. Kim and B. Lee, Stability estimates for a radical functional equation with fixed-point approaches, J. Math. Inequal., 2022, 25(2), 433–446.

    Google Scholar

    [17] A. K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst., 1984, 12, 143–154.

    Google Scholar

    [18] A. Zivari-Kazempour and M. Eshaghi Gordji, Generalized Hyers-Ulam stabilities of an Euler-Lagrange-Rassias quadratic functional equation, Asian-Eur. J. Math., 2012, 5, Article ID 1250014.

    Google Scholar

    [19] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 1975, 11, 326–334.

    Google Scholar

    [20] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst., 1994, 63, 207–217.

    Google Scholar

    [21] S. Lee, S. Im and I. Hwang, Quartic functional equation, J. Math. Anal. Appl., 2005, 307, 387–394.

    Google Scholar

    [22] S. A. Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed space, Chaos Solitons Fract., 2009, 42, 2989–2996.

    Google Scholar

    [23] S. A. Mohiuddine, M. Cancan and H. Ševli, Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique, Math. Comput. Model., 2011, 54, 2403–2409.

    Google Scholar

    [24] S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fract., 2009, 42, 1731–1737.

    Google Scholar

    [25] S. A. Mohiuddine and H. Ševli, Stability of pexiderized quadratic functional equation in intuitionistic fuzzy normed space, J. Comput. Appl. Math., 2011, 235, 2137–2146.

    Google Scholar

    [26] R. Murali, C. Park and A. Ponmana Selvan, Hyers-Ulam stability for an nth order differential equation using fixed point approach, J. Appl. Anal. Comput., 2021, 11(2), 614–631.

    $ n^{th} $ order differential equation using fixed point approach" target="_blank">Google Scholar

    [27] M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fract., 2009, 41, 2414–2421.

    Google Scholar

    [28] M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fract., 2009, 42, 2997–3005.

    Google Scholar

    [29] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed spaces, J. Comput. Appl. Math., 2009, 233, 141–149.

    Google Scholar

    [30] C. Park, Fuzzy stability of functional equation associated with inner product spaces, Fuzzy Sets Syst., 2009, 160, 1632–1642.

    Google Scholar

    [31] M. Ramdoss, D. Pachaiyappan, J. M. Rassias and C. Park, Stability of a generalized Euler-Lagrange radical multifarious functional equation, J. Appl., 2024, 32(6), 3185–3195.

    Google Scholar

    [32] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 2004, 294, 196–205.

    Google Scholar

    [33] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300.

    Google Scholar

    [34] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fract., 2006, 27, 331–344.

    Google Scholar

    [35] S. M. Ulam, Problem in Modern Mathematics, Wiley, New York, 1964.

    Google Scholar

    [36] Z. Wang and Th. M. Rassias, Intuitionistic fuzzy stability of functional equations associated with inner product spaces, Abstr. Appl. Anal., 2011, 2011, Article ID 456182.

    Google Scholar

    [37] C. Wu and J. Fang, Fuzzy generalization of Kolmogoroff's theorem, J. Harbin Inst. Tech., 1984, 1984(1), 1–7.

    Google Scholar

    [38] J. Z. Xiao and X. H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 2003, 133, 389–399.

    Google Scholar

    [39] T. Z. Xu, Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces, Abstr. Appl. Anal., 2013, 2013, Article ID 648709.

    Google Scholar

    [40] T. Z. Xu and J. M. Rassias, Stability of general multi-Euler-Lagrange quadratic functional equation in non-Archimedean fuzzy normed spaces, Adv. Difference Equ., 2012, 2012, Paper No. 119.

    Google Scholar

    [41] H. Yao, W. Jin and Q. Dong, Hyers-Ulam-Rassias stability of $ \kappa $-Caputo fractional differential equations, J. Appl. Anal. Comput., 2024, 14(5), 2903–2921.

    $ \kappa $-Caputo fractional differential equations" target="_blank">Google Scholar

    [42] A. Zada, L. Alam, J. Xu and W. Dong, Controllability and Hyers-Ulam stability of impulsive second order abstract damped differential systems, J. Appl. Anal. Comput., 2021, 11(3), 1222–1239.

    Google Scholar

    [43] D. Zhang, J. M. Rassias and Y. Li, On the Hyers-Ulam solution and stability problem for general set-valued Euler-Lagrange quadratic functional equations, Korean J. Math., 2022, 30(4), 571–592.

    Google Scholar

Article Metrics

Article views(392) PDF downloads(26) Cited by(0)

Access History

Other Articles By Authors

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint