Citation: | Liang Xue, Qian Sun, Donal O'Regan, Jiafa Xu. EXISTENCE OF NONTRIVIAL SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM INVOLVING THE CAPUTO-FABRIZIO-TYPE FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1786-1802. doi: 10.11948/20240411 |
In this work we study the existence of nontrivial solutions for a Caputo-Fabrizio-type fractional integral boundary value problem. We first construct a new linear operator, which can include the integral boundary condition, and then under some conditions involving the spectral radius of the linear operator, we use topological degree methods to obtain some existence theorems for our considered problem.
[1] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017, 313, 1–11. |
[2] | T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 2017, 80, 11–27. doi: 10.1016/S0034-4877(17)30059-9 |
[3] | K. K. Ali, K. R. Raslan, A. A. Ibrahim and D. Baleanu, The nonlocal coupled system of Caputo-Fabrizio fractional q-integro differential equation, Math. Methods Appl. Sci., 2024, 47, 1764–1780. doi: 10.1002/mma.9646 |
[4] | K. K. Ali, K. R. Raslan, A. A. Ibrahim and M. S. Mohamed, On study the existence and uniqueness of the solution of the Caputo-Fabrizio coupled system of nonlocal fractional q-integro differential equations, Math. Methods Appl. Sci., 2023, 46, 13226–13242. doi: 10.1002/mma.9246 |
[5] | M. Alshammari, S. Alshammari and M. S. Abdo, Existence theorems for hybrid fractional differential equations with ψ-weighted Caputo-Fabrizio derivatives, J. Math., 2023, 13, 8843470. |
[6] | A. Atangana and S. İ. Araz, A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives, AIMS Math., 2023, 8, 27309–27327. doi: 10.3934/math.20231397 |
[7] | V. M. Bulavatsky, Boundary-value problems of fractional-differential consolidation dynamics for the model with the Caputo-Fabrizio derivative, Kibernet. Sistem. Anal., 2023, 59, 159–168. doi: 10.1007/s10559-023-00600-3 |
[8] | N. Chefnaj, K. Hilal and A. Kajouni, Existence of the solution for hybrid differential equation with Caputo-Fabrizio fractional derivative, Filomat, 2023, 37, 2219–2226. doi: 10.2298/FIL2307219C |
[9] | A. N. Dalawi, M. Lakestani and E. Ashpazzadeh, Solving fractional optimal control problems involving Caputo-Fabrizio derivative using Hermite spline functions, Iran. J. Sci., 2023, 47, 545–566. doi: 10.1007/s40995-022-01404-4 |
[10] | D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, volume 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1988. |
[11] | Y. Henka and M. Z. Aissaoui, Hermite wavelets collocation method for solving a Fredholm integro-differential equation with fractional Caputo-Fabrizio derivative, Proyecciones, 2023, 42, 917–930. doi: 10.22199/issn.0717-6279-5542 |
[12] | S. G. Kebede and A. G. Lakoud, Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation, Bound. Value Probl., 2023, 44, 1–17. |
[13] | M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation, 1950, 26, 128. |
[14] | S. Krim, S. Abbas, M. Benchohra and J. J. Nieto, Implicit Caputo-Fabrizio fractional differential equations with delay, Stud. Univ. Babeş-Bolyai Math., 2023, 68, 727–742. |
[15] | W. Lanfang, Existence of positive solutions to two-point boundary value problems of fractional differentional equations involving Caputo-Fabrizio fractional derivatives, J. Jishou University, 2023, 44, 1–5. |
[16] | I. Mansouri, M. M. Bekkouche, A. A. Ahmed, F. Yazid and F. S. Djeradi, Analytical and numerical study of a linear coupled system involving Caputo-Fabrizio fractional derivative with boundary conditions, Fract. Differ. Calc., 2023, 13, 171–183. |
[17] | K. O. Melha, M. Djilali and V. L. Chinchane, Abstract fractional differential equations with Caputo-Fabrizio derivative, Fract. Differ. Calc., 2023, 13, 149–162. |
[18] | J. Nasir, S. Qaisar, A. Qayyum and H. Budak, New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function, Filomat, 2023, 37, 4943–4957. |
[19] | M. Onitsuka and I. El-Fassi, Generalized Caputo-Fabrizio fractional differential equation, J. Appl. Anal. Comput., 2024, 14, 964–975. |
[20] | A. Souigat, Z. Korichi and M. Tayeb Meftah, Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: Application to intrinsic arsenic diffusion in germanium, Rev. Mexicana Fís., 2024, 70, 010501. |
[21] | H. Wang, X. Zhang, Z. Luo and J. Liu, Analysis of numerical method for diffusion equation with time-fractional Caputo-Fabrizio derivative, J. Math., 2023, 11, 7906656. |
[22] | W. Wang, J. Ye, J. Xu and D. O'Regan, Positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 2022, 14, 2320. |
[23] | H. Yang, S. Qaisar, A. Munir and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, AIMS Math., 2023, 8, 19391–19412. |
[24] | W. Zhong, L. Wang and T. Abdeljawad, Separation and stability of solutions to nonlinear systems involving Caputo-Fabrizio derivatives, Adv. Difference Equ., 2020, 166, 1–15. |