2025 Volume 15 Issue 3
Article Contents

Zhilong Shi, Linru Nie, Jibin Li. EXACT SOLUTIONS OF TWO HIGH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS: DYNAMICAL SYSTEM METHOD[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1820-1829. doi: 10.11948/20240451
Citation: Zhilong Shi, Linru Nie, Jibin Li. EXACT SOLUTIONS OF TWO HIGH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS: DYNAMICAL SYSTEM METHOD[J]. Journal of Applied Analysis & Computation, 2025, 15(3): 1820-1829. doi: 10.11948/20240451

EXACT SOLUTIONS OF TWO HIGH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS: DYNAMICAL SYSTEM METHOD

  • Author Bio: Email: linrunie@126.com(L. Nie); Email: lijb@zjnu.cn(J. Li)
  • Corresponding author: Email: dragon24011@163.com(Z. Shi) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11871231, 12071162, 11701191) and National Science Foundation of Fujian Province (2021J01303)
  • For two generalization models of the first type derivative nonlinear Schrödinger (DNLSI) equation and the second type derivative nonlinear Schrödinger (DNLSII) equation, by using the method of dynamical systems to investigate the existence of exact explicit solutions with the form $ q(x,t)=\phi(\xi)\exp{[i(\kappa x-\omega t+\theta(\xi))]}, \xi=x-ct. $ This paper show that in some given parameter conditions, explicit exact parametric representations of $ \phi(\xi)$ and $\theta(\xi) $ can be given.

    MSC: 34C23, 35Q51-53, 58J55
  • 加载中
  • [1] H. M. Baskonus, M. Younis, M. Bilal, et al., Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics, Modern Phys. Lett. B, 2020, 34(35), 2050404. doi: 10.1142/S0217984920504047

    CrossRef Google Scholar

    [2] H. H. Chen, Y. C. Lee and C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 1979, 20, 490. doi: 10.1088/0031-8949/20/3-4/026

    CrossRef Google Scholar

    [3] Q. Cheng, Z. Zhang, Q. Wang, et al., Solitary, periodic, kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory, Propulsion and Power Research, 2024, 13(3), 433–444. doi: 10.1016/j.jppr.2024.07.001

    CrossRef Google Scholar

    [4] R. Cheng, Z. Luo and X. Hong, Bifurcations and new traveling wave solutions for the nonlinear dispersion Drinfel'd-Sokolov (D(m, n)) system, Journal of Nonlinear Modeling and Analysis, 2021, 3(2), 193–207.

    Google Scholar

    [5] H. Dai and E. Fan, Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation, Chaos Solitons & Fractals, 2004, 22(1), 93–101.

    Google Scholar

    [6] M. Dong, L. Tian, J. Wei, et al., Some localized wave solutions for the coupled Gerdjikov-Ivanov equation, Applied Mathematics Letters, 2021, 122, 107483. doi: 10.1016/j.aml.2021.107483

    CrossRef Google Scholar

    [7] E. Fan, Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation, Journal of Physics. A. Mathematical and General: A Europhysics Journal, 2000, 33(39), 6925–6933.

    Google Scholar

    [8] E. Fan, Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation, J. Math. Phys., 2000, 41(11), 7769–7782. doi: 10.1063/1.1314895

    CrossRef Google Scholar

    [9] E. Fan, Bi-Hamiltonian structure and Liouville integrablity for a Gerdjikov-Ivanov equation hierarchy, Chin. Phys. Lett., 2001, 18(1), 3.

    Google Scholar

    [10] E. Fan, Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure, Journal of Physics A General Physics, 2001, 34(3), 513.

    Google Scholar

    [11] E. Fan, A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations, Journal of Mathematical Physics, 2001, 42(9), 4327–4327. doi: 10.1063/1.1389288

    CrossRef Google Scholar

    [12] Fromm, Samuel admissible boundary values for the Gerdjikov-Ivanov equation with asymptotically time-periodic boundary data, SIGMA Symmetry Integrability Geom. Methods Appl., 2020, 16, 079.

    Google Scholar

    [13] V. S. Gerdjikov and M. I. Ivanov, A quadratic pencil of general type and nonlinear evolution equations. Ⅱ. Hierarchies of Hamiltonian structures, Bulg. J. Phys., 1983, 10(1), 13.

    Google Scholar

    [14] C. A. S. Gómez, A. Jhangeer, H. Rezazadeh, R. A. Talarposhti and A. Bekir, Closed form solutions of the perturbed Gerdjikov-Ivanov equation with variable coefficients, East Asian J. Appl. Math., 2021, 11(1), 207–218.

    Google Scholar

    [15] Q. H. Han and M. Jia, Higher-dimensional Chen-Lee-Liu equation and asymmetric peakon soliton, Chinese Phys. B, 2024, 33(4), 040202.

    Google Scholar

    [16] S. M. I. Hassan and A. A. Altwaty, Optical solitons of the extended Gerdjikov-Ivanov equation in DWDM system by extended simplest equation method, Appl. Math. Inf. Sci., 2020, 14(5), 901–907.

    Google Scholar

    [17] B. He and Q. Meng, Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equation, Communications in Nonlinear Sci. Numerical Simulat., 2010, 15, 1783–1790.

    Google Scholar

    [18] K. K. Al-Kalbani, K. S. Al-Ghafri, E. V. Krishnan, et al., Solitons and modulation instability of the perturbed Gerdjikov-Ivanov equation with spatio-temporal dispersion, Chaos, Solitons and Fractals, 2021, 153, 111523.

    Google Scholar

    [19] D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 1978, 19(4), 798.

    Google Scholar

    [20] A. Ke and J. Li, Exact solutions and dynamics of Kundu-Mukherjee-Naskar model, Journal of Applied Analysis & Computation, 2024, 14(2), 1014–1022.

    Google Scholar

    [21] M. M. A. Khater, Abundant wave solutions of the perturbed Gerdjikov-Ivanov equation in telecommunication industry, Modern Phys. Lett. B, 2021, 35(26), 2150456.

    Google Scholar

    [22] M. M. A. Khater, X. Zhang and R. A. M. Attia, Accurate computational simulations of perturbed Chen-Lee-Liu equation, Results in Physics, 2023, 45, 106227.

    Google Scholar

    [23] N. A. Kudryashov, First integrals and solutions of the traveling wave reduction for the Triki-Biswas equation, Optik-International Journal for Light and Electron Optics, 2019, 185, 275–281.

    Google Scholar

    [24] N. A. Kudryashov and S. F. Lavrova, Painlevé analysis of the traveling wave reduction of the third-order derivative nonlinear Schrödinger equation, Mathematics, 2024, 12, 1632.

    Google Scholar

    [25] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [26] M. Li, R. Ye and Y. Lou, Exact solutions of the nonlocal Gerdjikov-Ivanov equation, Communications in Theoretical Physics, 2021, 73(10), 105005.

    Google Scholar

    [27] Y. Li, L. Zhang, B. Hu and R. Wang, The initial-boundary value for the combined Schrödinger and Gerdjikov-Ivanov equation on the half-line via the Riemann-Hilbert approach, (Russian) Teoret. Mat. Fiz., 2021, 209(2), 258–273.

    Google Scholar

    [28] N. Liu, J. Y. Sun and J. D. Yu, Inverse scattering and soliton dynamics for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation, Applied Mathematics Letters, 2024, 152, 109029.

    Google Scholar

    [29] Y. Lou, Y. Zhang, R. Ye and M. Li, Modulation instability, higher-order rogue waves and dynamics of the Gerdjikov-Ivanov equation, Wave Motion, 2021, 106, 102795.

    Google Scholar

    [30] P. Lu, Y. Wang and C. Dai, Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method, Chinese J. Phys., 2021, 74, 96–105.

    Google Scholar

    [31] J. Luo and E. Fan, -dressing method for the coupled Gerdjikov-Ivanov equation, Appl. Math. Lett., 2020, 110, 106589.

    -dressing method for the coupled Gerdjikov-Ivanov equation" target="_blank">Google Scholar

    [32] J. Luo and E. Fan, Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions, Appl. Math. Lett., 2021, 120, 107297.

    Google Scholar

    [33] A. Saima, Sub-pico second chirped optical pulses with Triki-Biswas equation by e−Φ(ξ)-expansion method and the first integral method, Optik, 2019, 179, 518–525.

    Google Scholar

    [34] H. Triki and A. Biswas, Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrödinger's model, Optik-International Journal for Light and Electron Optics, 2018, 173, 235–241.

    Google Scholar

    [35] T. Tsuchida, Integrable discretizations of derivative nonlinear Schrödinger equations, Journal of Physics A General Physics, 2002, 35, 7827–7847.

    Google Scholar

    [36] Vinita and S. S. Ray, Lie symmetry reductions, power series solutions and conservation laws of the coupled Gerdjikov-Ivanov equation using optimal system of Lie subalgebra, Z. Angew. Math. Phys., 2021, 72(4), 133.

    Google Scholar

    [37] K. L. Wang, Novel solitary wave and periodic solutions for the nonlinear Kaup-Newell equation in optical fibers, Opt. Quant. Electron., 2024, 514, 56.

    Google Scholar

    [38] K. L. Wang, G. D. Wang and F. Shi, Sub-picosecond pulses in single-mode optical fibres with the Kaup-Newell model via two innovative methods, Pramana-J. Phys., 2024, 26, 98.

    Google Scholar

    [39] X. Xiao and Z. Yin, Exact single travelling wave solutions to the fractional perturbed Gerdjikov-Ivanov equation in nonlinear optics, Modern Phys. Lett. B, 2021, 35, 22.

    Google Scholar

    [40] Q. Xu and C. Zhang, Bifurcation analysis and chaos of a modified Holling-Tanner model with discrete time, Journal of Applied Analysis & Computation, 2024, 14(6), 3425–3449.

    Google Scholar

    [41] L. Xue and Q. Zhang, Soliton solutions of derivative nonlinear Schrödinger equations: Conservative schemes and numerical simulation, Physica D: Nonlinear Phenomena, 2024, 470, 134372.

    Google Scholar

    [42] S. S. Zhang, T. Xu, M. Li and X. F. Zhang, Higher-order algebraic soliton solutions of the Gerdjikov-Ivanov equation: Asymptotic analysis and emergence of rogue waves, Phys. D, 2022, 432, 133128.

    Google Scholar

    [43] Z. Zhang and E. Fan, Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background, Z. Angew. Math. Phys., 2021, 72(4), 153.

    Google Scholar

    [44] Z. Zhang and E. Fan, Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions, Z. Angew. Math. Phys., 2020, 71(5), 149.

    Google Scholar

    [45] Y. Zhou and J. Zhuang, Bifurcations and exact solutions of the Raman soliton model in nanoscale optical waveguides with metamaterials, Journal of Nonlinear Modeling and Analysis, 2021, 3(1), 145–165.

    Google Scholar

    [46] J. Zhu and Y. Chen, A new form of general soliton solutions and multiple zeros solutions for a higher-order Kaup-Newell equation, J. Math. Phys., 2021, 62, 123501.

    Google Scholar

    [47] J. Zhuang, Y. Zhou and J. Li, Bifurcations and exact solutions of the derivative nonlinear Schrödinger equations DNLSI-DNLSIII: Dynamical system method, to appear.

    Google Scholar

Figures(3)

Article Metrics

Article views(348) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint