2025 Volume 15 Issue 5
Article Contents

Shuo Wang, Li Sun, Yumei Huang. A MODULUS ITERATION METHOD FOR NONNEGATIVELY CONSTRAINED PHOTOACOUSTIC IMAGE RECONSTRUCTION[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3185-3206. doi: 10.11948/20240453
Citation: Shuo Wang, Li Sun, Yumei Huang. A MODULUS ITERATION METHOD FOR NONNEGATIVELY CONSTRAINED PHOTOACOUSTIC IMAGE RECONSTRUCTION[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3185-3206. doi: 10.11948/20240453

A MODULUS ITERATION METHOD FOR NONNEGATIVELY CONSTRAINED PHOTOACOUSTIC IMAGE RECONSTRUCTION

  • The photoacoustic tomography (PAT) is a new biomedical imaging modality. Its assistance in early clinical diagnosis has become more and more important in the medical field. In the PAT imaging system, when a beam of short-pulsed laser irradiates the biological tissue, the photoacoustic effect results in the generation of the acoustic waves in the tissue. The initial acoustic pressure appearing in the tissue reveals the structures of the tissue. The PAT reconstruction problem aims to obtain the initial acoustic pressure in the tissue from the collected photoacoustic signal informations. In this paper, we propose a nonnegatively constrained PAT reconstruction model regularized by a hybrid Gaussian-Laplacian mixture term. The model can be reformulated as a nonnegatively constrained quadratic programming problem with a positive definite coefficient matrix and it is shown to be equivalent to a linear complementarity problem. We apply a modulus iteration method to solve the linear complementarity problem and its convergence is also demonstrated. Numerical results illustrate that the proposed method is competitive with the existing efficient methods for the PAT reconstruction problem.

    MSC: 65K15, 90C90, 92C55
  • 加载中
  • [1] B. H. Ahn, Solution of nonsymmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 1981, 33(2), 175-185. doi: 10.1007/BF00935545

    CrossRef Google Scholar

    [2] S. Antholzer, M. Haltmeier and J. Schwab, Deep learning for photoacoustic tomography from sparse data, Inverse Probl. Sci. Eng., 2019, 27(7), 987-1005. doi: 10.1080/17415977.2018.1518444

    CrossRef Google Scholar

    [3] S. Arridge, P. Beard and M. Betcke, Accelerated high-resolution photoacoustic tomography via compressed sensing, Phys. Med. Biol., 2016, 61(24), 8908. doi: 10.1088/1361-6560/61/24/8908

    CrossRef Google Scholar

    [4] Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM J. Matrix Anal. Appl., 1999, 21(1), 67-78. doi: 10.1137/S0895479897324032

    CrossRef Google Scholar

    [5] Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2010, 17(6), 917-933. doi: 10.1002/nla.680

    CrossRef Google Scholar

    [6] Z. Bai, A. Buccini, K. Hayami, L. Reichel, J. Yin and N. Zheng, Modulus-based iterative methods for constrained Tikhonov regularization, J. Comput. Appl. Math., 2017, 319, 1-13. doi: 10.1016/j.cam.2016.12.023

    CrossRef Google Scholar

    [7] Z. Bai and D. J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, Int. J. Comput. Math., 1997, 63(3-4), 309-326. doi: 10.1080/00207169708804569

    CrossRef Google Scholar

    [8] Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods, Int. J. Comput. Math., 2002, 79(2), 205-232. doi: 10.1080/00207160211927

    CrossRef Google Scholar

    [9] Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 2003, 24(3), 603-626. doi: 10.1137/S0895479801395458

    CrossRef Google Scholar

    [10] A. G. Bell, On the production and reproduction of sound by light, Am. J. Sci., 1880, 118(3), 305-324.

    Google Scholar

    [11] X. L. Dean-Ben, A. Buehler and V. Ntziachristos, Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography, IEEE Trans. Med. Imaging, 2012, 31(10), 1922-1928. doi: 10.1109/TMI.2012.2208471

    CrossRef Google Scholar

    [12] X. L. Dean-Ben, V. Ntziachristos and D. Razansky, Acceleration of optoacoustic model-based reconstruction using angular image discretization, IEEE Trans. Med. Imaging, 2012, 31(5), 1154-1162. doi: 10.1109/TMI.2012.2187460

    CrossRef Google Scholar

    [13] W. M. G. van Bokhoven, Piecewise Linear Modeling and Analysis, Proefschrift, Eindhoven, 1981.

    Google Scholar

    [14] A. Buccini, M. Pasha and L. Reichel, Modulus-based iterative methods for constrained $l_p-l_q$ minimization, Inverse Probl., 2020, 36(8), 084001. doi: 10.1088/1361-6420/ab9f86

    CrossRef Google Scholar

    [15] R. W. Cottle, J. Pang and R. E Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.

    Google Scholar

    [16] C. W. Cryer, The solution of a quadratic programming problem using systematic overrelaxation, SIAM J. Control Optim., 1971, 9(3), 385-392. doi: 10.1137/0309028

    CrossRef Google Scholar

    [17] L. Ding, X. L. Dean-Ben and C. Lutzweiler, Efficient non-negative constrained model-based inversion in optoacoustic tomography, Phys. Med. Biol., 2015, 60(17), 6733. doi: 10.1088/0031-9155/60/17/6733

    CrossRef Google Scholar

    [18] L. Ding, X. L. Dean-Ben and D. Razansky, Real-time model-based inversion in cross-sectional optoacoustic tomography, IEEE Trans. Med. Imaging, 2016, 35(8), 1883-1891. doi: 10.1109/TMI.2016.2536779

    CrossRef Google Scholar

    [19] J. Dong, J. Gao, F. Ju and J. Shen, Modulus methods for nonnegatively constrained image restoration, SIAM J. Imaging Sci., 2016, 9(3), 1226-1246. doi: 10.1137/15M1045892

    CrossRef Google Scholar

    [20] J. Dong and M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl., 2009, 16(2), 129-143. doi: 10.1002/nla.609

    CrossRef Google Scholar

    [21] Y. Dong, T. Görner and S. Kunis, An algorithm for total variation regularized photoacoustic imaging, Adv. Comput. Math., 2015, 41, 423-438. doi: 10.1007/s10444-014-9364-1

    CrossRef Google Scholar

    [22] Y. Gao, W. Xu, Y. Chen, W. Xie and Q. Cheng, Deep learning-based photoacoustic imaging of vascular network through thick porous media, IEEE Trans. Med. Imaging, 2022, 41(8), 2191-2204. doi: 10.1109/TMI.2022.3158474

    CrossRef Google Scholar

    [23] S. Gutta, S. K. Kalva, M. Pramanik and P. K. Yalavarthy, Accelerated image reconstruction using extrapolated Tikhonov filtering for photoacoustic tomography, Med. Phys., 2018, 45(8), 3749-3767. doi: 10.1002/mp.13023

    CrossRef Google Scholar

    [24] Y. Han, L. Ding and X. L. Dean-Ben, Three-dimensional optoacoustic reconstruction using fast sparse representation, Opt. Lett., 2017, 42(5), 979-982. doi: 10.1364/OL.42.000979

    CrossRef Google Scholar

    [25] Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Probl., 2008, 24(5), 055006. doi: 10.1088/0266-5611/24/5/055006

    CrossRef Google Scholar

    [26] K. T. Hsu, S. Guan and P. V. Chitnis, Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation, Photoacoustics, 2023, 29, 100452. doi: 10.1016/j.pacs.2023.100452

    CrossRef Google Scholar

    [27] M. J. John and I. Barhumi, Fast and efficient PAT image reconstruction algorithms: A comparative performance analysis, Signal Processing, 2022, 201, 108691. doi: 10.1016/j.sigpro.2022.108691

    CrossRef Google Scholar

    [28] R. A. Kruger, P. Liu and Y. Fang, Photoacoustic ultrasound (PAUS)-reconstruction tomography, Med. Phys., 1995, 2(10), 1605-1609.

    Google Scholar

    [29] L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Probl., 2007, 23(1), 373. doi: 10.1088/0266-5611/23/1/021

    CrossRef Google Scholar

    [30] X. Li, L. Qi and S. Zhang, Model-based optoacoustic tomography image reconstruction with non-local and sparsity regularizations, IEEE Access, 2019, 7, 102136-102148. doi: 10.1109/ACCESS.2019.2930650

    CrossRef Google Scholar

    [31] Y. Lou, W. Zhou and T. P. Matthews, Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging, J. Biomed. Opt., 2017, 22(4), 041015. doi: 10.1117/1.JBO.22.4.041015

    CrossRef Google Scholar

    [32] O. L. Mangasarian, Solutions of symmetric linear complementarity problems by iterative methods, J. Optim. Theory Appl., 1977, 22(4), 465-485. doi: 10.1007/BF01268170

    CrossRef Google Scholar

    [33] K. G. Murty and F. Yu, Linear Complementarity, Linear and Nonlinear Programming, Heldermann-Verlag, Berlin, 1988.

    Google Scholar

    [34] S. Na and L. V. Wang, Photoacoustic computed tomography for functional human brain imaging, Biomed. Opt. Express, 2021, 12(7), 4056-4083. doi: 10.1364/BOE.423707

    CrossRef Google Scholar

    [35] B. Pan, S. R. Arridge and F. Lucka, Photoacoustic reconstruction using sparsity in curvelet frame: Image versus data domain, IEEE Trans. Comput. Imaging, 2021, 7, 879-893. doi: 10.1109/TCI.2021.3103606

    CrossRef Google Scholar

    [36] J. Prakash, S. Mandal and D. Razansky, Maximum entropy based non-negative optoacoustic tomographic image reconstruction, IEEE Trans. Biomed. Eng., 2019, 66(9), 2604-2616. doi: 10.1109/TBME.2019.2892842

    CrossRef Google Scholar

    [37] R. Prakash, D. Badal, A. Paul, D. Sonker and R. K. Saha, Photoacoustic signal simulation using discrete particle approach and its application in tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020, 68(3), 707-717.

    Google Scholar

    [38] C. B. Shaw, J. Prakash and M. Pramanik, Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography, J. Biomed. Opt., 2013, 18(8), 080501. doi: 10.1117/1.JBO.18.8.080501

    CrossRef Google Scholar

    [39] K. Sivasubramanian, V. Periyasamy and M. Pramanik, Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal, J. Biophotonics, 2018, 11(1), e201700061. doi: 10.1002/jbio.201700061

    CrossRef Google Scholar

    [40] B. Stephanian, M. T. Graham and H. Hou, Additive noise models for photoacoustic spatial coherence theory, Biomed. Opt. Express, 2018, 9(11), 5566-5582. doi: 10.1364/BOE.9.005566

    CrossRef Google Scholar

    [41] Q. Huynh-Thu and M. Ghanbari, Scope of validity of PSNR in image/video quality assessment, Electron. Lett., 2008, 44(13), 800-801. doi: 10.1049/el:20080522

    CrossRef Google Scholar

    [42] B. E. Treeby and B. T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 2010, 15(2), 021314. doi: 10.1117/1.3360308

    CrossRef Google Scholar

    [43] P. Tseng, On linear convergence of iterative methods for the variational inequality problem, J. Comput. Appl. Math., 1995, 60(1-2), 237-252. doi: 10.1016/0377-0427(94)00094-H

    CrossRef Google Scholar

    [44] T. Wang, M. He, K. Shen, W. Liu and C. Tian, Learned regularization for image reconstruction in sparse-view photoacoustic tomography, Biomed. Opt. Express, 2022, 13(11), 5721-5737. doi: 10.1364/BOE.469460

    CrossRef Google Scholar

    [45] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 2004, 13(4), 600-612. doi: 10.1109/TIP.2003.819861

    CrossRef Google Scholar

    [46] Z. Wang, Z. Han and R. Hu, Noise robust face hallucination employing Gaussian-Laplacian mixture model, Neurocomputing, 2014, 133, 153-160. doi: 10.1016/j.neucom.2013.11.021

    CrossRef Google Scholar

    [47] Z. Wang, H. Wang and S. Ren, Research on ADMM reconstruction algorithm of photoacoustic tomography with limited sampling data, IEEE Access, 2021, 9, 113631-113641. doi: 10.1109/ACCESS.2021.3104154

    CrossRef Google Scholar

    [48] M. Xu and L. V. Wang, Time-domain reconstruction for thermoacoustic tomography in a spherical geometry, IEEE Trans. Med. Imaging, 2002, 21(7), 814-822. doi: 10.1109/TMI.2002.801176

    CrossRef Google Scholar

    [49] M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E., 2005, 71(1), 016706. doi: 10.1103/PhysRevE.71.016706

    CrossRef Google Scholar

    [50] M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 2006, 77(4), 041101. doi: 10.1063/1.2195024

    CrossRef Google Scholar

    [51] M. Xu, Y. Xu and L. V. Wang, Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries, IEEE Trans. Biomed. Eng., 2003, 50(9), 1086-1099. doi: 10.1109/TBME.2003.816081

    CrossRef Google Scholar

    [52] Y. Xu, D. Feng and L. V. Wang, Exact frequency-domain reconstruction for thermoacoustic tomography, I. Planar geometry, IEEE Trans. Med. Imaging, 2002, 21(7), 823-828. doi: 10.1109/TMI.2002.801172

    CrossRef Google Scholar

    [53] Y. Xu and L. V. Wang, Time reversal and its application to tomography with diffracting sources, Phys. Rev. Lett., 2004, 92(3), 033902. doi: 10.1103/PhysRevLett.92.033902

    CrossRef Google Scholar

    [54] Y. Xu, M. Xu and L. V. Wang, Exact frequency-domain reconstruction for thermoacoustic tomography, Ⅱ. Cylindrical geometry, IEEE Trans. Med. Imaging, 2002, 21(7), 829-833. doi: 10.1109/TMI.2002.801171

    CrossRef Google Scholar

    [55] P. K. Yalavarthy, S. K. Kalva and M. Pramanik, Non-local means improves total-variation constrained photoacoustic image reconstruction, J. Biophotonics, 2021, 14(1), e202000191. doi: 10.1002/jbio.202000191

    CrossRef Google Scholar

    [56] I. Yamaga, N. Kawaguchi Sakita and Y. Asao, Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer, Photoacoustics, 2018, 11, 6-13. doi: 10.1016/j.pacs.2018.06.002

    CrossRef Google Scholar

    [57] X. Yang, Y. Huang and L. Sun, A modulus iteration method for retinex problem, Numer. Linear Algebra Appl., 2018, 25(6), e2207. doi: 10.1002/nla.2207

    CrossRef Google Scholar

    [58] J. Zhang and X. Zhang, A modulus iteration method for non-negatively constrained TV image restoration, Comput. Math. Appl., 2023, 148, 62-69. doi: 10.1016/j.camwa.2023.07.030

    CrossRef Google Scholar

    [59] Y. Zhang, Y. Wang and C. Zhang, Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction, Ultrasonics, 2012, 52(8), 1046-1055. doi: 10.1016/j.ultras.2012.08.012

    CrossRef Google Scholar

    [60] N. Zheng, K. Hayami and J. Yin, Modulus-type inner outer iterative methods for nonnegative constrained least squares problems, SIAM J. Matrix Anal. Appl., 2016, 37(3), 1250-1278. doi: 10.1137/141002220

    CrossRef Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(49) PDF downloads(51) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint