2025 Volume 15 Issue 5
Article Contents

Kamal Shah, Arshad Ali, M. Boukhobza, A. Debbouche, Thabet Abdeljawad. HYERS-ULAM STABILITY ANALYSIS FOR PIECEWISE VARIABLE ORDER FRACTIONAL IMPULSIVE EVOLUTION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3159-3184. doi: 10.11948/20240536
Citation: Kamal Shah, Arshad Ali, M. Boukhobza, A. Debbouche, Thabet Abdeljawad. HYERS-ULAM STABILITY ANALYSIS FOR PIECEWISE VARIABLE ORDER FRACTIONAL IMPULSIVE EVOLUTION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3159-3184. doi: 10.11948/20240536

HYERS-ULAM STABILITY ANALYSIS FOR PIECEWISE VARIABLE ORDER FRACTIONAL IMPULSIVE EVOLUTION SYSTEMS

  • We investigate a class of piecewise variable-order fractional differential equations with impulsive and nonlocal conditions in Banach space. The nonhomogeneous term in the proposed system is given in terms of variable kernel which has flexibility property. We formulate appropriate equivalent integral equations to the considered evolution problem, then we show the solvability results by using mainly fractional calculus and fixed point techniques. Further, we study Hyers-Ulam stability analysis by adapting suitable conditions. The concerned area has numerous applications in those evolution processes and phenomenon, where abrupt changes occur. At the end, we support our obtained theory by illustrative and computational example.

    MSC: 34A08, 34G20, 34D20
  • 加载中
  • [1] T. Abdeljawad, N. Mlaiki and M. S. Abdo, Caputo-type fractional systems with variable order depending on the impulses and changing the kernel, Fractals, 2022, 30(8), 2240219. doi: 10.1142/S0218348X22402198

    CrossRef Google Scholar

    [2] Z. Ahmad, F. Ali, A. M. Alqahtani, N. Khan and I. Khan, Dynamics of cooperative reactions based on chemical kinetics with reaction speed: A comparative analysis with singular and nonsingular kernels, Fractals, 2022, 30(01), 2240048. doi: 10.1142/S0218348X22400485

    CrossRef Google Scholar

    [3] Z. Ahmad, G. Bonanomi, A. Cardone, A. Iuorio, G. Toraldo and F. Giannino, Fractal-fractional sirs model for the disease dynamics in both prey and predator with singular and nonsingular kernels, Journal of Biological Systems, 2024, 32(04), 1487–1520. doi: 10.1142/S0218339024400035

    CrossRef Google Scholar

    [4] Z. Ahmad, G. Bonanomi, D. di Serafino and F. Giannino, Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Applied Numerical Mathematics, 2023, 185, 446–465. doi: 10.1016/j.apnum.2022.12.004

    CrossRef Google Scholar

    [5] Z. Ahmad, S. Crisci, S. Murtaza and G. Toraldo, Numerical insights of fractal-fractional modeling of magnetohydrodynamic Casson hybrid nanofluid with heat transfer enhancement, Mathematical Methods in the Applied Sciences, 2024, 47(11), 9046–9066. doi: 10.1002/mma.10059

    CrossRef Google Scholar

    [6] A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily and N. Mlaiki, Coupled system of fractional impulsive problem involving power-law kernel with piecewise order, Fractal Fract. 2023, 7(6), 436. doi: 10.3390/fractalfract7060436

    CrossRef Google Scholar

    [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460–481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [8] J. Alzabut, M. Houas and M. I. Abbas, Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives, Demonstratio Mathematica, 2023, 56(1), 20220205. doi: 10.1515/dema-2022-0205

    CrossRef Google Scholar

    [9] K. J. Ansari, Asma, F. Ilyas, K. Shah, A. Khan and T. Abdeljawad, On new updated concept for delay differential equations with piecewise Caputo fractional-order derivative, Waves in Random and Complex Media, 2023, 2023, 1–20.

    Google Scholar

    [10] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 2016, 20(2), 763–769. doi: 10.2298/TSCI160111018A

    CrossRef Google Scholar

    [11] K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations, 2010, 4, 1–12.

    Google Scholar

    [12] M. Bragdi, A. Debbouche and D. Baleanu, Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space, Advances in Mathematical Physics, 2013, 426061.

    Google Scholar

    [13] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Applicable Analysis, 1991, 40(1), 11–19. doi: 10.1080/00036819008839989

    CrossRef Google Scholar

    [14] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 2015, 1(2), 73–85.

    Google Scholar

    [15] A. Debbouche and J. J. Nieto, Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions, Electronic Journal of Differential Equations, 2015, 2015(89), 1–18.

    Google Scholar

    [16] M. Du, Z. Wang and H. Hu, Measuring memory with the order of fractional derivative, Scientific Reports, 2013, 3(1), 1–3.

    Google Scholar

    [17] L. L. Huang, J. H. Park, G. C. Wu and Z. W. Mo, Variable-order fractional discrete-time recurrent neural networks, J. Comput. Appli. Math., 2020, 370, 112633. doi: 10.1016/j.cam.2019.112633

    CrossRef Google Scholar

    [18] A. Jajarmi, D. Baleanu, K. Zarghami Vahid and S. Mobayen, A general fractional formulation and tracking control for immunogenic tumor dynamics, Mathematical Methods in the Applied Sciences, 2022, 45, 667–680. doi: 10.1002/mma.7804

    CrossRef Google Scholar

    [19] K. Karthikeyan, A. Debbouche and D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal and Fractional, 2021, 5(1), 22. doi: 10.3390/fractalfract5010022

    CrossRef Google Scholar

    [20] A. Khan, J. F. Gómez-Aguilar, T. S. Khan and H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos, Solitons Fractals, 2019, 122, 119–128. doi: 10.1016/j.chaos.2019.03.022

    CrossRef Google Scholar

    [21] H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi and M. U. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Mathematics, 2023, 8(3), 6609–6625. doi: 10.3934/math.2023334

    CrossRef Google Scholar

    [22] H. Khan, W. Chen, A. Khan, T. S. Khan and Q. M. Al-Madlal, Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Advances in Difference Equations, 2018, 2018, 1–16. doi: 10.1186/s13662-017-1452-3

    CrossRef Google Scholar

    [23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [24] H. Kim, R. Sakthivel, A. Debbouche and D. F. M. Torres, Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations, Chaos, Solitons & Fractals, 2020, 131, 109542.

    Google Scholar

    [25] S. Kumar, R. Kumar, M. S. Osman and B. Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials, Numerical Methods for Partial Differential Equations, 2021, 37(2), 1250–1268. doi: 10.1002/num.22577

    CrossRef Google Scholar

    [26] V. Lakshmikantham and A. Vatsala, Basic theory of frac-tional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(8), 2677–2682.

    Google Scholar

    [27] V. Lakshimikantham and A. Vatsala, Theory of fractional differential inequalities and applications, Communications in Applied Analysis, 2007, 11, 395–402.

    Google Scholar

    [28] X. Liao, T. Zhou, L. Zhang, X. Hu and Y. Peng, A method for calculating the derivative of activation functions based on piecewise linear approximation, Electronics, 2023, 12(2), 267. doi: 10.3390/electronics12020267

    CrossRef Google Scholar

    [29] B. Maayah, A. Moussaoui, S. Bushnaq and O. Abu Arqub, The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach, Demonstratio Mathematica, 2022, 55(1), 963–977. doi: 10.1515/dema-2022-0183

    CrossRef Google Scholar

    [30] R. L. Magin, Fractional calculus in bioengineering-part 2, Crit. Rev. Biomed. Eng., 2004, 32(2), 105–193. doi: 10.1615/CritRevBiomedEng.v32.i2.10

    CrossRef Google Scholar

    [31] C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math Bio., 2003, 181, 1–16. doi: 10.1016/S0025-5564(02)00149-9

    CrossRef Google Scholar

    [32] M. Mohammad, M. Sweidan and A. Trounev, Piecewise fractional derivatives and wavelets in epidemic modeling, Alexandria Engineering Journal, 2024, 101, 245–253. doi: 10.1016/j.aej.2024.05.053

    CrossRef Google Scholar

    [33] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 1997, 50, 15–67. doi: 10.1115/1.3101682

    CrossRef Google Scholar

    [34] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon & Breach, Amsterdam, The Netherlands, 1993.

    Google Scholar

    [35] H. Schaefer, Über die methode der a priori-Schranken, Math. Ann., 1955, 129, 415–416. doi: 10.1007/BF01362380

    CrossRef Google Scholar

    [36] K. Shah, T. Abdeljawad and A. Ali, Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative, Chaos, Solitons & Fractals, 2022, 161, 112356.

    Google Scholar

    [37] K. Shah, A. Ullah and J. J. Nieto, Study of fractional order impulsive evolution problem under nonlocal Cauchy conditions, Math. Method. Appl. Sci., 2021, 44(11), 8516–8527. doi: 10.1002/mma.7274

    CrossRef Google Scholar

    [38] G. C. Wu, Z. G. Deng, D. Baleanu and D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 2019, 29, 083103. doi: 10.1063/1.5096645

    CrossRef Google Scholar

    [39] G. C. Wu, M. Luo, L. L. Huang and S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dynamics, 2020, 100(4), 3611–3623. doi: 10.1007/s11071-020-05572-z

    CrossRef Google Scholar

    [40] G. C. Wu, D. Q. Zeng and D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case, Fractional Calculus and Applied Analysis, 2019, 22, 180–192. doi: 10.1515/fca-2019-0012

    CrossRef Google Scholar

    [41] A. Zeb, A. Atangana, Z. Khan and S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alexandria Engineering Journal, 2022, 61(7), 5649–5665. doi: 10.1016/j.aej.2021.11.039

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(68) PDF downloads(71) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint