2025 Volume 15 Issue 5
Article Contents

Qing Zhang, Zhengdong Du. ON THE LYAPUNOV CONSTANTS OF PLANAR PIECEWISE SMOOTH SYSTEMS SEPARATED BY AN ANALYTICAL CURVE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3128-3158. doi: 10.11948/20240503
Citation: Qing Zhang, Zhengdong Du. ON THE LYAPUNOV CONSTANTS OF PLANAR PIECEWISE SMOOTH SYSTEMS SEPARATED BY AN ANALYTICAL CURVE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3128-3158. doi: 10.11948/20240503

ON THE LYAPUNOV CONSTANTS OF PLANAR PIECEWISE SMOOTH SYSTEMS SEPARATED BY AN ANALYTICAL CURVE

  • Author Bio: Email: qingzhang97@163.com(Q. Zhang)
  • Corresponding author: Email: zdu1985@qq.com(Z. Du)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11971019)
  • In this paper, we consider the computations of Lyapunov constants of a class of planar piecewise analytical systems defined in two zones separated by an analytical curve $ y=\phi(x) $ with $ \phi(0)=0 $. Assume that the origin $ (0, 0) $ is a pseudo-focus of the system. We propose an extension of the classical polar coordinates for the subsystem with focus contact, and an extension of the $ (R, \theta, 1, 2) $-generalized polar coordinates for the subsystem with parabolic contact. Then we present the method on how to calculate the relevant Lyapunov constants. As applications, we present three planar piecewise quadratic systems. The first one is of parabolic-parabolic type separated by $ y=\sin^2 x $ which has four limit cycles bifurcated from $ (0, 0) $. The second one is of focus-parabolic type separated by $ y=e^x-1 $ which has five limit cycles bifurcated from $ (0, 0) $. The last one is of focus-focus type separated by $ y=\sin x $ which has five limit cycles bifurcated from $ (0, 0) $.

    MSC: 34C07, 34C23, 34A36
  • 加载中
  • [1] K. da S. Andrade, O. A. R. Cespedes, D. R. Cruz and D. D. Novaes, Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve, J. Differ. Equ., 2021, 287, 1–36. doi: 10.1016/j.jde.2021.03.039

    CrossRef Google Scholar

    [2] J. L. R. Bastos, C. A. Buzzi and J. Torregrosa, Cyclicity near infinity in piecewise linear vector fields having a nonregular switching line, Qual. Theory Dyn. Syst., 2023, 22(4), 125, 11 pages.

    Google Scholar

    [3] D. de Carvalho Braga, A. F. da Fonseca, L. F. Gonçalves and L. F. Mello, Lyapunov coefficients for an invisible fold-fold singularity in planar piecewise Hamiltonian systems, J. Math. Anal. Appl., 2020, 484(1), 123692, 19 pages.

    Google Scholar

    [4] D. de Carvalho Braga and L. F. Mello, More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane, Internat. J. Bifur. Chaos, 2014, 24(4), 1450056, 10 pages.

    Google Scholar

    [5] P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 2016, 337, 67–82. doi: 10.1016/j.physd.2016.07.008

    CrossRef Google Scholar

    [6] V. Carmona, F. Fernández-Sánchez and D. D. Novaes, Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line, Appl. Math. Lett., 2023, 137, 108501, 8 pages.

    Google Scholar

    [7] T. Chen, L. Huang and P. Yu, Center condition and bifurcation of limit cycles for quadratic switching systems with a nilpotent equilibrium point, J. Differ. Equ., 2021, 303, 326–368. doi: 10.1016/j.jde.2021.09.030

    CrossRef Google Scholar

    [8] T. Chen and J. Llibre, Nilpotent center in a continuous piecewise quadratic polynomial hamiltonian vector field, Internat. J. Bifur. Chaos, 2022, 32(8), 2250116, 23 pages.

    Google Scholar

    [9] X. Chen, V. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 2015, 432(2), 1058–1076. doi: 10.1016/j.jmaa.2015.07.036

    CrossRef Google Scholar

    [10] B. Coll, A. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-homogeneous vector fields, Canad. J. Math., 1997, 49(2), 212–231. doi: 10.4153/CJM-1997-011-0

    CrossRef Google Scholar

    [11] B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems, J. Math. Anal. Appl., 2001, 253(2), 671–690. doi: 10.1006/jmaa.2000.7188

    CrossRef Google Scholar

    [12] L. P. C. da Cruz, D. D. Novaes and J. Torregrosa, New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 2019, 266(7), 4170–4203. doi: 10.1016/j.jde.2018.09.032

    CrossRef Google Scholar

    [13] M. Esteban, E. Freire, E. Ponce and F. Torres, On normal forms and return maps for pseudo-focus points, J. Math. Anal. Appl., 2022, 507(1), 125774, 31 pages.

    Google Scholar

    [14] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos, 1998, 8(11), 2073–2097. doi: 10.1142/S0218127498001728

    CrossRef Google Scholar

    [15] A. Gasull, Some open problems in low dimensional dynamical systems, SeMA J., 2021, 78(3), 233–269. doi: 10.1007/s40324-021-00244-3

    CrossRef Google Scholar

    [16] A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos, 2003, 13(7), 1755–1765. doi: 10.1142/S0218127403007618

    CrossRef Google Scholar

    [17] A. Gasull, J. Torregrosa and X. Zhang, Piecewise linear differential systems with an algebraic line of separation, Electron. J. Differential Equations, 2020, Paper No. 19, 14 pages.

    Google Scholar

    [18] L. F. S. Gouveia and J. Torregrosa, Local cyclicity in low degree planar piecewise polynomial vector fields, Nonlinear Anal.-Real World Appl., 2021, 60, 103278, 19 pages.

    Google Scholar

    [19] M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations, 1999, 15(2), 113–126.

    Google Scholar

    [20] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    Google Scholar

    [21] M. Han and S. Liu, Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems, Bull. Sci. Math., 2024, 195, 103471, 30 pages.

    Google Scholar

    [22] M. Han and J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Modeling and Analysis, 2021, 3(1), 13–34.

    Google Scholar

    [23] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differ. Equ., 2010, 248(9), 2399–2416. doi: 10.1016/j.jde.2009.10.002

    CrossRef Google Scholar

    [24] H. A. Hosham, Bifurcation of periodic orbits in discontinuous systems, Nonlinear Dynam., 2017, 87, 135–148. doi: 10.1007/s11071-016-3031-7

    CrossRef Google Scholar

    [25] S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 2012, 32(6), 2147–2164. doi: 10.3934/dcds.2012.32.2147

    CrossRef Google Scholar

    [26] S. Huan and X. Yang, Limit cycles in a family of planar piecewise linear differential systems with a nonregular separation line, Internat. J. Bifur. Chaos, 2019, 29(8), 1950109, 22 pages.

    Google Scholar

    [27] A. Ke, M. Han and W. Geng, The number of limit cycles from the perturbation of a quadratic isochronous system with two switching lines, Commun. Pure Appl. Anal, 2022, 21(5), 1793-1809. doi: 10.3934/cpaa.2022047

    CrossRef Google Scholar

    [28] Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 2003, 13(8), 2157–2188. doi: 10.1142/S0218127403007874

    CrossRef Google Scholar

    [29] T. Li and J. Llibre, Limit cycles in piecewise polynomial Hamiltonian systems allowing nonlinear switching boundaries, J. Differ. Equ., 2023, 344, 405–438. doi: 10.1016/j.jde.2022.11.007

    CrossRef Google Scholar

    [30] F. Liang, V. G. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solit. Fract., 2018, 111, 18–34. doi: 10.1016/j.chaos.2018.04.002

    CrossRef Google Scholar

    [31] H. Liu, Z. Wei and I. Moroz, Limit cycles and bifurcations in a class of planar piecewise linear systems with a nonregular separation line, J. Math. Anal. Appl., 2023, 526(2), 127318, 25 pages.

    Google Scholar

    [32] S. Liu and M. Han, Limit cycle bifurcations near double homoclinic and double heteroclinic loops in piecewise smooth systems, Chaos Solit. Fract., 2023, 175, 113970, 11 pages.

    Google Scholar

    [33] S. Liu and M. Han, Homoclinic and heteroclinic bifurcations in piecewise smooth systems via stability-changing method, Comput. Appl. Math., 2024, 43(5), 274, 24 pages.

    Google Scholar

    [34] X. Liu, X. Yang and S. Huan, Existence of four-crossing-points limit cycles in planar sector-wise linear systems with saddle-saddle dynamics, Qual. Theory Dyn. Syst., 2022, 21(3), 63, 31 pages.

    Google Scholar

    [35] J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 2014, 413(2), 763–775. doi: 10.1016/j.jmaa.2013.12.031

    CrossRef Google Scholar

    [36] J. Llibre and E. Ponce, Piecewise linear feedback systems with arbitrary number of limit cycles, Internat. J. Bifur. Chaos, 2003, 13(4), 895–904. doi: 10.1142/S0218127403007047

    CrossRef Google Scholar

    [37] J. Llibre, E. Ponce and X. Zhang, Existence of piecewise linear differential systems with exactly $n$ limit cycles for all $n \in \mathbb{N}$, Nonlinear Anal., 2003, 54(5), 977–994. doi: 10.1016/S0362-546X(03)00122-6

    CrossRef $n$ limit cycles for all $n \in \mathbb{N}$" target="_blank">Google Scholar

    [38] R. Lum and L. O. Chua, Global properties of continuous piecewise linear vector fields, part I: Simplest case in $\mathbb{R}^2$, Int. J. Circuit Theory Appl., 1991, 19(3), 251–307. doi: 10.1002/cta.4490190305

    CrossRef $\mathbb{R}^2$" target="_blank">Google Scholar

    [39] D. D. Novaes, On the Hilbert number for piecewise linear vector fields with algebraic discontinuity set, Phys. D, 2022, 441, 133523, 15 pages.

    Google Scholar

    [40] D. D. Novaes and L. A. Silva, Lyapunov coefficients for monodromic tangential singularities in Filippov vector fields, J. Differ. Equ., 2021, 300, 565–596. doi: 10.1016/j.jde.2021.08.008

    CrossRef Google Scholar

    [41] C. Pessoa and R. Ribeiro, Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential system with three zones, Nonlinear Anal.-Real World Appl., 2024, 80, 104171, 17 pages.

    Google Scholar

    [42] L. Sun and Z. Du, Crossing limit cycles in planar piecewise linear systems separated by a nonregular line with node-node type critical points, Internat. J. Bifur. Chaos, 2024, 34(4), 2450049, 23 pages.

    Google Scholar

    [43] H. Tian and M. Han, Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26(10), 5581–5599.

    Google Scholar

    [44] Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differ. Equ., 2015, 259(3), 1203–1226. doi: 10.1016/j.jde.2015.02.044

    CrossRef Google Scholar

    [45] D. Weiss, T. Küpper and H. A. Hosham, Invariant manifolds for nonsmooth systems with sliding mode, Math. Comput. Simulation, 2015, 110, 15–32. doi: 10.1016/j.matcom.2014.02.004

    CrossRef Google Scholar

    [46] L. Xiong, K. Wu and S. Li, Global dynamics of a degenerate planar piecewise linear differential system with three zones, Bull. Sci. Math., 2023, 184, 103258, 27 pages.

    Google Scholar

    [47] Y. Xiong and M. Han, Limit cycle bifurcations in discontinuous planar systems with multiple lines, J. Appl. Anal. Comput., 2020, 10(1), 361–377.

    Google Scholar

    [48] Y. Zou and T. Küpper, Generalized Hopf bifurcation emanated from a corner for piecewise smooth planar systems, Nonlinear Anal., 2005, 62(1), 1–17. doi: 10.1016/j.na.2004.06.004

    CrossRef Google Scholar

    [49] Y. Zou, T. Küpper and W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Sci., 2006, 16(2), 159–177. doi: 10.1007/s00332-005-0606-8

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(58) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint