Citation: | Junbiao Guan, Shihao Chen. FEEDBACK CONTROL OF CHAOS IN THE MODIFIED KDV-BURGERS-KURAMOTO EQUATION VIA A SINGLE TIME-DELAY[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 17-33. doi: 10.11948/20250034 |
In this paper, we investigate the time-delayed feedback control of a novel three-dimensional chaotic system which is found from a class of modified KdV-Burgers-Kuramoto (mKBK) equation. First, the local stability and the occurrence of Hopf bifurcation are studied by introducing a single time-delayed feedback term into the chaotic system. Then, the dynamical properties of bifurcated periodic solutions are investigated by applying the algorithm depending on the normal form theory and center manifold theorem. Finally, numerical simulations are presented to illustrate the effectiveness of the theoretical results.
[1] | K. A. Abro, A. Atangana and J. F. Gómez-Aguilar, Chaos control and characterization of brushless DC motor via integral and differential fractal-fractional techniques, International Journal of Modelling and Simulation, 2022, 202, 1–10. |
[2] | A. J. Adéchinan, Y. J. F. Kpomahou, L. A. Hinvi and C. H. Miwadinou, Chaos, coexisting attractors and chaos control in a nonlinear dissipative chemical oscillator, Chinese Journal of Physics, 2022, 77, 2684–2697. |
[3] | M. S. Ahmed, A. A. S. Zaghrout and H. M. Ahmed, Exploration new solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity using improved modified extended tanh-function method, The European Physical Journal Plus, 2023, 138(1), 32. doi: 10.1140/epjp/s13360-023-03666-2?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata |
[4] | S. Chen and X. Lü, Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model, Transportmetrica B: Transport Dynamics, 2024, 12(1), 2336029. |
[5] | M. Cinar, A. Secer, M. Hashemi Sajjad, M. Ozisik and M. Bayram, A comprehensive analysis of Fokas-Lenells equation using Lie symmetry method, Mathematical Methods in the Applied Sciences, 2024, 47(7), 5819–5830. |
[6] | D. Costa, E. Pavlovskaia and M. Wiercigroch, Feedback control of chaos in impact oscillator with multiple time-delays, Chaos, Solitons & Fractals, 2024, 181, 114570. |
[7] | M. Ekici, Stationary optical solitons with Kudryashov's quintuple power law nonlinearity by extended Jacobi's elliptic function expansion, Journal of Nonlinear Optical Physics & Materials, 2023, 32(01), 2350008. |
[8] | L. C. Feng, L. Liu, J. D. Cao and F. E. Alsaadi, General stabilization of non-autonomous hybrid systems with delays and random noises via delayed feedback control, Communications in Nonlinear Science and Numerical Simulation, 2023, 117, 106939. |
[9] | D. Gao, W. X. Ma and X. Lü, Wronskian solution, Bäcklund transformation and Painlevé a nalysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation, Zeitschrift für Naturforschung A, 2024, 79(9), 887–895. |
[10] | J. Guan, J. Liu and Z. Feng, Hopf bifurcation of KdV-Burgers-Kuramoto system with delay feedback, International Journal of Bifurcation and Chaos, 2020, 30(14), 2050213. |
[11] | C. Han and X. Lü, Novel patterns in the space variable fractional order Gray-Scott model, Nonlinear Dynamics, 2024, 112(18), 16135–16151. doi: 10.1007/s11071-024-09857-5 |
[12] | C. Han and X. Lü, Variable coefficient-informed neural network for PDE inverse problem in fluid dynamics, Physica D: Nonlinear Phenomena, 2025, 472, 134362. |
[13] | B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, London New York, 1981. |
[14] | J. H. He, M. L. Jiao, K. A. Gepreel and Y. Khan, Homotopy perturbation method for strongly nonlinear oscillators, Mathematics and Computers in Simulation, 2023, 204, 243–258. |
[15] | A. Jhangeer, H. Almusawa and Z. Hussain. Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution, Results in Physics, 2022, 37, 105492. |
[16] | N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Physics Letters A, 1990, 147, 287–291. |
[17] | N. A. Kudryashov and E. D. Zargaryan, Solitary waves in active-dissipative dispersive media, Journal of Physics A: Mathematical and General, 1996, 29, 8067–8077. |
[18] | S. F. Lavrova and N. A. Kudryashov, Nonlinear dynamical regimes of the generalized Kuramoto-Sivashinsky equation with various degrees of nonlinearity, AIP Conference Proceedings, 2022, 2425, 340013. |
[19] | X. Lü and S. J. Chen, N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation, Chaos Solitons & Fractals, 2023, 169, 113291. |
[20] | X. Lü, L. L. Zhang and W. X. Ma, Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions, Physics of Fluids, 2024, 36(6), 064110. |
[21] | S. Luo, H. Ma, F. Li and H. M. Ouakad, Dynamical analysis and chaos control of MEMS resonators by using the analog circuit, Nonlinear Dynamics, 2022, 108(1), 97–112. doi: 10.1007/s11071-022-07227-7?utm_source=xmol&utm_content=meta |
[22] | M. Mohammadpour, A. Abdelkefi and P. Safarpour, Controlling chaos in bi-stable energy harvesting systems using delayed feedback control, Meccanica, 2023, 58(4), 587–606. doi: 10.1007/s11012-022-01599-1 |
[23] | X. Peng, Y. W. Zhao and X. Lü, Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications, Nonlinear Dynamics, 2024, 112(2), 1291–1306. |
[24] | K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 1992, 170(6), 421–428. |
[25] | W. B. Rabie, H. M. Ahmed, M. Mirzazadeh, A. Akbulut and M. S. Hashemi, Investigation of solitons and conservation laws in an inhomogeneous optical fiber through a generalized derivative nonlinear Schrödinger equation with quintic nonlinearity, Optical and Quantum Electronics, 2023, 55(9), 825. |
[26] | J. G. Telles Ribeiro, M. Pereira and A. Cunha, Controlling chaos for energy harvesting via digital extended time-delay feedback, The European Physical Journal Special Topics, 2022, 231(8), 1485–1490. |
[27] | Y. B. Su, X. Lü, S. K. Li, L. X. Yang and Z. Gao, Self-adaptive equation embedded neural networks for traffic flow state estimation with sparse data, Physics of Fluids, 2024, 36(10), 104127. |
[28] | K. Wang, S. Chen and Z. Du, Dynamics of travelling waves to KdV-Burgers-Kuramoto equation with Marangoni effect perturbation, Qualitative Theory of Dynamical Systems, 2022, 21(4), 132. |
[29] | S. Wen, H. Qin and Y. Shen, Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control, The European Physical Journal Special Topics, 2022, 231(11), 2183–2197. |
[30] | L. L. Zhang, X. Lü and S. Z. Zhu, Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation, International Journal of Theoretical Physics, 2024, 63(7), 160. |
[31] | Y. Zhang and X. Lü, Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers, Physica D: Nonlinear Phenomena, 2024, 468, 134284. |
[32] | H. Zheng, Y. Xia and M. Pinto, Chaotic motion and control of the driven-damped double Sine-Gordon equation, Discrete & Continuous Dynamical Systems-Series B, 2022, 27(12), 7151–7167. |
Chaotic attractor of system (2.4) with
System (4.2) exhibits Hopf bifurcation when
The equilibrium point of system (4.2) is locally stable when