2026 Volume 16 Issue 1
Article Contents

Junbiao Guan, Shihao Chen. FEEDBACK CONTROL OF CHAOS IN THE MODIFIED KDV-BURGERS-KURAMOTO EQUATION VIA A SINGLE TIME-DELAY[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 17-33. doi: 10.11948/20250034
Citation: Junbiao Guan, Shihao Chen. FEEDBACK CONTROL OF CHAOS IN THE MODIFIED KDV-BURGERS-KURAMOTO EQUATION VIA A SINGLE TIME-DELAY[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 17-33. doi: 10.11948/20250034

FEEDBACK CONTROL OF CHAOS IN THE MODIFIED KDV-BURGERS-KURAMOTO EQUATION VIA A SINGLE TIME-DELAY

  • In this paper, we investigate the time-delayed feedback control of a novel three-dimensional chaotic system which is found from a class of modified KdV-Burgers-Kuramoto (mKBK) equation. First, the local stability and the occurrence of Hopf bifurcation are studied by introducing a single time-delayed feedback term into the chaotic system. Then, the dynamical properties of bifurcated periodic solutions are investigated by applying the algorithm depending on the normal form theory and center manifold theorem. Finally, numerical simulations are presented to illustrate the effectiveness of the theoretical results.

    MSC: 34H10, 34K18, 34K20
  • 加载中
  • [1] K. A. Abro, A. Atangana and J. F. Gómez-Aguilar, Chaos control and characterization of brushless DC motor via integral and differential fractal-fractional techniques, International Journal of Modelling and Simulation, 2022, 202, 1–10.

    Google Scholar

    [2] A. J. Adéchinan, Y. J. F. Kpomahou, L. A. Hinvi and C. H. Miwadinou, Chaos, coexisting attractors and chaos control in a nonlinear dissipative chemical oscillator, Chinese Journal of Physics, 2022, 77, 2684–2697.

    Google Scholar

    [3] M. S. Ahmed, A. A. S. Zaghrout and H. M. Ahmed, Exploration new solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity using improved modified extended tanh-function method, The European Physical Journal Plus, 2023, 138(1), 32. doi: 10.1140/epjp/s13360-023-03666-2?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata

    CrossRef Google Scholar

    [4] S. Chen and X. Lü, Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model, Transportmetrica B: Transport Dynamics, 2024, 12(1), 2336029.

    Google Scholar

    [5] M. Cinar, A. Secer, M. Hashemi Sajjad, M. Ozisik and M. Bayram, A comprehensive analysis of Fokas-Lenells equation using Lie symmetry method, Mathematical Methods in the Applied Sciences, 2024, 47(7), 5819–5830.

    Google Scholar

    [6] D. Costa, E. Pavlovskaia and M. Wiercigroch, Feedback control of chaos in impact oscillator with multiple time-delays, Chaos, Solitons & Fractals, 2024, 181, 114570.

    Google Scholar

    [7] M. Ekici, Stationary optical solitons with Kudryashov's quintuple power law nonlinearity by extended Jacobi's elliptic function expansion, Journal of Nonlinear Optical Physics & Materials, 2023, 32(01), 2350008.

    Google Scholar

    [8] L. C. Feng, L. Liu, J. D. Cao and F. E. Alsaadi, General stabilization of non-autonomous hybrid systems with delays and random noises via delayed feedback control, Communications in Nonlinear Science and Numerical Simulation, 2023, 117, 106939.

    Google Scholar

    [9] D. Gao, W. X. Ma and X. Lü, Wronskian solution, Bäcklund transformation and Painlevé a nalysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation, Zeitschrift für Naturforschung A, 2024, 79(9), 887–895.

    Google Scholar

    [10] J. Guan, J. Liu and Z. Feng, Hopf bifurcation of KdV-Burgers-Kuramoto system with delay feedback, International Journal of Bifurcation and Chaos, 2020, 30(14), 2050213.

    Google Scholar

    [11] C. Han and X. Lü, Novel patterns in the space variable fractional order Gray-Scott model, Nonlinear Dynamics, 2024, 112(18), 16135–16151. doi: 10.1007/s11071-024-09857-5

    CrossRef Google Scholar

    [12] C. Han and X. Lü, Variable coefficient-informed neural network for PDE inverse problem in fluid dynamics, Physica D: Nonlinear Phenomena, 2025, 472, 134362.

    Google Scholar

    [13] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, London New York, 1981.

    Google Scholar

    [14] J. H. He, M. L. Jiao, K. A. Gepreel and Y. Khan, Homotopy perturbation method for strongly nonlinear oscillators, Mathematics and Computers in Simulation, 2023, 204, 243–258.

    Google Scholar

    [15] A. Jhangeer, H. Almusawa and Z. Hussain. Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution, Results in Physics, 2022, 37, 105492.

    Google Scholar

    [16] N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Physics Letters A, 1990, 147, 287–291.

    Google Scholar

    [17] N. A. Kudryashov and E. D. Zargaryan, Solitary waves in active-dissipative dispersive media, Journal of Physics A: Mathematical and General, 1996, 29, 8067–8077.

    Google Scholar

    [18] S. F. Lavrova and N. A. Kudryashov, Nonlinear dynamical regimes of the generalized Kuramoto-Sivashinsky equation with various degrees of nonlinearity, AIP Conference Proceedings, 2022, 2425, 340013.

    Google Scholar

    [19] X. Lü and S. J. Chen, N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation, Chaos Solitons & Fractals, 2023, 169, 113291.

    Google Scholar

    [20] X. Lü, L. L. Zhang and W. X. Ma, Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions, Physics of Fluids, 2024, 36(6), 064110.

    Google Scholar

    [21] S. Luo, H. Ma, F. Li and H. M. Ouakad, Dynamical analysis and chaos control of MEMS resonators by using the analog circuit, Nonlinear Dynamics, 2022, 108(1), 97–112. doi: 10.1007/s11071-022-07227-7?utm_source=xmol&utm_content=meta

    CrossRef Google Scholar

    [22] M. Mohammadpour, A. Abdelkefi and P. Safarpour, Controlling chaos in bi-stable energy harvesting systems using delayed feedback control, Meccanica, 2023, 58(4), 587–606. doi: 10.1007/s11012-022-01599-1

    CrossRef Google Scholar

    [23] X. Peng, Y. W. Zhao and X. Lü, Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications, Nonlinear Dynamics, 2024, 112(2), 1291–1306.

    Google Scholar

    [24] K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 1992, 170(6), 421–428.

    Google Scholar

    [25] W. B. Rabie, H. M. Ahmed, M. Mirzazadeh, A. Akbulut and M. S. Hashemi, Investigation of solitons and conservation laws in an inhomogeneous optical fiber through a generalized derivative nonlinear Schrödinger equation with quintic nonlinearity, Optical and Quantum Electronics, 2023, 55(9), 825.

    Google Scholar

    [26] J. G. Telles Ribeiro, M. Pereira and A. Cunha, Controlling chaos for energy harvesting via digital extended time-delay feedback, The European Physical Journal Special Topics, 2022, 231(8), 1485–1490.

    Google Scholar

    [27] Y. B. Su, X. Lü, S. K. Li, L. X. Yang and Z. Gao, Self-adaptive equation embedded neural networks for traffic flow state estimation with sparse data, Physics of Fluids, 2024, 36(10), 104127.

    Google Scholar

    [28] K. Wang, S. Chen and Z. Du, Dynamics of travelling waves to KdV-Burgers-Kuramoto equation with Marangoni effect perturbation, Qualitative Theory of Dynamical Systems, 2022, 21(4), 132.

    Google Scholar

    [29] S. Wen, H. Qin and Y. Shen, Chaos threshold analysis of Duffing oscillator with fractional-order delayed feedback control, The European Physical Journal Special Topics, 2022, 231(11), 2183–2197.

    Google Scholar

    [30] L. L. Zhang, X. Lü and S. Z. Zhu, Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation, International Journal of Theoretical Physics, 2024, 63(7), 160.

    Google Scholar

    [31] Y. Zhang and X. Lü, Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers, Physica D: Nonlinear Phenomena, 2024, 468, 134284.

    Google Scholar

    [32] H. Zheng, Y. Xia and M. Pinto, Chaotic motion and control of the driven-damped double Sine-Gordon equation, Discrete & Continuous Dynamical Systems-Series B, 2022, 27(12), 7151–7167.

    Google Scholar

Figures(3)

Article Metrics

Article views(64) PDF downloads(25) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint