Citation: | Haifeng Wang, Jinxiu Li, Huiqin Cao. GENERALIZED NONISOSPECTRAL MULTI-COMPONENT SUPER INTEGRABLE HIERARCHY AND DARBOUX TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 45-75. doi: 10.11948/20250124 |
Based on Lie superalgebra spl(2N, 1), a generalized nonisospectral multi-component super Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy is obtained. Then, we present a generalized nonisospectral three-component coupled super AKNS integrable hierarchy associated with Lie superalgebra spl(6, 1) which is a a special case of the Lie superalgebra spl(2N, 1) when N=3. Using of supertrace identity, the super bi-Hamiltonian structures of the generalized multi-component and three-component coupled super AKNS integrable hierarchies are obtained. Additionally, we investigate the Darboux transformation of the generalized nonisospectral three-component coupled super AKNS integrable hierarchy.
[1] | M. J. Ablowitz, D. J. Kaup, A. C. Newelland and H. Segur, The inverse scattering Transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 1974, 53, 249–315. |
[2] | S. Carillo and O. Ragnisco, Nonlinear Evolution Equations and Dynamical Systems, Springer Science and Business Media, Berlin, 2012. |
[3] | L. Debnath, Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981. |
[4] | F. Demontis and C. van der Mee, From the AKNS system to the matrix Schrödinger equation with vanishing potentials: Direct and inverse problems, Stud. Appl. Math., 2023, 150, 481–519. |
[5] | C. Devchand and J. Schiff, The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group, J. Math. Phys., 2001, 42(1), 260–273. |
[6] | B. Dubrovin, S. Q. Liu and Y. J. Zhang, On Hamiltonian perturbations of hyperbolic systems of conservation laws: Ⅰ. Quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure Appl. Math., 2005, 59(4), 559–615. |
[7] | G. Falqui, F. Magri and M. Pedroni, Bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy, Commun. Math. Phys., 1998, 197(2), 303–324. |
[8] | X. G. Geng, A hierarchy of nonlinear evolution equations, its Hamiltonian structure and classical integrable system, Physica A, 1992, 180(1–2), 241–251. |
[9] | X. G. Geng, B. Xue and L. H. Wu, A Super Camassa-Holm Equation with N-Peakon Solutions, Stud. Appl. Math., 2013, 130, 1–16. |
[10] | V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. Ⅰ. Expansions over the "squared" solutions are generalized Fourier transforms, Bulg. J. Phys., 1983, 10, 13–26. |
[11] | M. Gürses and O. Oguz, A super AKNS scheme, Phys. Lett. A, 1985, 108, 437–440. |
[12] | J. W. Han and J. Yu, A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 258–265. |
[13] | B. Y. He and L. Y. Chen, Super integrable hierarchies associated with spl(2, 1) and Darboux transformations, J. Math. Phys., 2017, 58(12), 123503. DOI: 10.1063/1.5018031. |
[14] | B. B. Hu, W. X. Ma, T. C. Xia and L. Zhang, Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures, Math. Method Appl. Sci., 2018, 41, 1565–1577. |
[15] | A. Inam and M. ul Hassan, Exact solitons of a N-component discrete coupled integrable system, Theor. Math. Phys., 2023, 214, 36–71. |
[16] | K. H. Karlsen and Y. Rybalko, On the well-posedness of a nonlocal (two-place) FORQ equation via a two-component peakon system, J. Math. Anal. Appl., 2024, 529, 127601. DOI: 10.1016/j.jmaa.2023.127601. |
[17] | B. Kupershmidt, Superintegrable systems, Proc. Nat. Acad. Sci. USA, 1984, 81(20), 6562–6563. |
[18] | J. X. Li and H. F. Wang, A multicomponent generalized nonisospectral super AKNS integrable hierarchy, Theor. Math. Phys., 2024, 221(3), 2083–2108. |
[19] | Q. P. Liu, Supersymmetric Harry Dym type equations, J. Phys. A: Math. Gen., 1995, 28(8), 245–248. |
[20] | W. X. Ma, Darboux transformations for a Lax integrable system in 2n-dimensions, Lett. Math. Phys., 1997, 39(1), 33–49. |
[21] | W. X. Ma, J. S. He and Z. Y. Qin, A supertrace identity and its applications to superingrable systems, J. Math. Phys., 2008. DOI: 10.1063/1.2897036. |
[22] | W. X. Ma, J. H. Meng and H. Q. Zhang, Integrable couplings, variational identities and Hamiltonian formulations, Global J. Math. Sci., 2012, 1(1), 1–17. |
[23] | W. X. Ma, C. G. Shi, E. A. Appiah, C. X. Li and S. F. Sheng, An integrable generalization of the Kaup-Newell soliton hierarchy, Phys. Scripta, 2014, 89, 085203. DOI: 10.1088/0031-8949/89/8/085203. |
[24] | Z. Popowicz, The fully supersymmetric AKNS equations, J. Phys. A: Math. Gen., 1990, 23(7), 1127–1136. |
[25] | G. H. M. Roelofs and P. H. M. Kersten, Supersymmetric extensions of the nonlinear Schrödinger equation: Symmetries and coverings, J. Math. Phys., 1992, 33(6), 2185–2206. |
[26] | A. Savchenko and A. Zabrodin, Multicomponent DKP hierarchy and its dispersionless limit, Lett. Math. Phys., 2025, 115, 1–26. |
[27] | S. F. Shen, C. X. Li, Y. Y. Jin and W. X. Ma, Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling, J. Math. Phys., 2017, 59, 103503. DOI: 10.1063/1.4990534. |
[28] | H. Z. Sun, Lie Algebras, Lie Superalgebras and their Applications in Physics, Peking University, Beijing, 1999. |
[29] | G. Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 1989, 30(2), 330–338. |
[30] | H. F. Wang and B. Y. He, A class of extended Lie superalgebras and their applications, Chaos Solitons Fract., 2023, 168, 113145. DOI: 10.1016/j.chaos.2023.113145. |
[31] | H. F. Wang, J. X. Li, Z. Z. Fang and H. J. Zhou, A novel kind of multi-component nonisospectral super soliton hierarchy with self-consistent sources, to appear in Phys. Fluids. |
[32] | H. F. Wang and Y. F. Zhang, Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations, J. Comput. Appl. Math., 2023, 420, 114812. DOI: 10.1016/j.cam.2022.114812. |
[33] | H. F. Wang and Y. F. Zhang, A new multi-component integrable coupling and its application to isospectral and nonisospectral problems, Commun. Nonlinear Sci. Numer. Simul., 2022, 105, 106075. DOI: 10.1016/j.cnsns.2021.106075. |
[34] | H. F. Wang, Y. F. Zhang and C. Z. Li, A multi-component super integrable Dirac hierarchy, Phys. Lett. B, 2023, 847, 138323. DOI: 10.1016/j.physletb.2023.138323. |
[35] | H. F. Wang, Y. F. Zhang and C. Z. Li, Multi-component super integrable Hamiltonian hierarchies, Physica D, 2023, 456, 133918. DOI: 10.1016/j.physd.2023.133918. |
[36] | Z. Y. Yan and H. Q. Zhang, A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems, J. Math. Phys., 2001, 42(1), 330–339. |
[37] | Y. J. Ye, Z. H. Li, C. X. Li, S. F. Shen and W. X. Ma, A generalized Dirac soliton hierarchy and its bi-Hamiltonian structure, Appl. Math. Lett., 2016, 60, 67–72. |
[38] | A. Zabrodin, Tau-Function of the Multi-Component CKP Hierarchy, Math. Phys. Anal. Geom., 2024. DOI: 10.1007/s11040-023-09473-6. |
[39] | Y. F. Zhang, J. Q. Mei and H. Y. Guan, A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries, J. Geom. Phys., 2020, 147, 103538. DOI: 10.1016/j.geomphys.2019.103538. |
[40] | Y. F. Zhang and X. Z. Zhang, A scheme for generating nonisospectral integrable hierarchies and its related applications, Acta. Math. Sin.-English Ser., 2021, 37(5), 707–730. |
[41] | R. G. Zhou, A hierarchy of super AKNS hierarchy related to Lie superalgebra sl(2|1) and a finite dimensional super Hamiltonian system, Mod. Phys. Lett. B, 2015, 29(22), 1550126. DOI: 10.1142/S0217984915501262. |