2026 Volume 16 Issue 1
Article Contents

Haifeng Wang, Jinxiu Li, Huiqin Cao. GENERALIZED NONISOSPECTRAL MULTI-COMPONENT SUPER INTEGRABLE HIERARCHY AND DARBOUX TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 45-75. doi: 10.11948/20250124
Citation: Haifeng Wang, Jinxiu Li, Huiqin Cao. GENERALIZED NONISOSPECTRAL MULTI-COMPONENT SUPER INTEGRABLE HIERARCHY AND DARBOUX TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 45-75. doi: 10.11948/20250124

GENERALIZED NONISOSPECTRAL MULTI-COMPONENT SUPER INTEGRABLE HIERARCHY AND DARBOUX TRANSFORMATION

  • Based on Lie superalgebra spl(2N, 1), a generalized nonisospectral multi-component super Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy is obtained. Then, we present a generalized nonisospectral three-component coupled super AKNS integrable hierarchy associated with Lie superalgebra spl(6, 1) which is a a special case of the Lie superalgebra spl(2N, 1) when N=3. Using of supertrace identity, the super bi-Hamiltonian structures of the generalized multi-component and three-component coupled super AKNS integrable hierarchies are obtained. Additionally, we investigate the Darboux transformation of the generalized nonisospectral three-component coupled super AKNS integrable hierarchy.

    MSC: 37K05, 37K40, 35Q53
  • 加载中
  • [1] M. J. Ablowitz, D. J. Kaup, A. C. Newelland and H. Segur, The inverse scattering Transform-Fourier analysis for nonlinear problems, Stud. Appl. Math.‌, 1974, 53, 249–315.

    Google Scholar

    [2] S. Carillo and O. Ragnisco, Nonlinear Evolution Equations and Dynamical Systems, Springer Science and Business Media, Berlin, 2012.

    Google Scholar

    [3] L. Debnath, Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981.

    Google Scholar

    [4] F. Demontis and C. van der Mee, From the AKNS system to the matrix Schrödinger equation with vanishing potentials: Direct and inverse problems, Stud. Appl. Math.‌, 2023, 150, 481–519.

    Google Scholar

    [5] C. Devchand and J. Schiff, The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group, J. Math. Phys., 2001, 42(1), 260–273.

    Google Scholar

    [6] B. Dubrovin, S. Q. Liu and Y. J. Zhang, On Hamiltonian perturbations of hyperbolic systems of conservation laws: Ⅰ. Quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure Appl. Math.‌, 2005, 59(4), 559–615.

    Google Scholar

    [7] G. Falqui, F. Magri and M. Pedroni, Bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy, Commun. Math. Phys., 1998, 197(2), 303–324.

    Google Scholar

    [8] X. G. Geng, A hierarchy of nonlinear evolution equations, its Hamiltonian structure and classical integrable system, Physica A‌, 1992, 180(1–2), 241–251.

    Google Scholar

    [9] X. G. Geng, B. Xue and L. H. Wu, A Super Camassa-Holm Equation with N-Peakon Solutions, Stud. Appl. Math., 2013, 130, 1–16.

    Google Scholar

    [10] V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. Ⅰ. Expansions over the "squared" solutions are generalized Fourier transforms, Bulg. J. Phys.‌, 1983, 10, 13–26.

    Google Scholar

    [11] M. Gürses and O. Oguz, A super AKNS scheme, Phys. Lett. A, 1985, 108, 437–440.

    Google Scholar

    [12] J. W. Han and J. Yu, A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure, Commun. Nonlinear Sci. Numer. Simul.‌, 2017, 44, 258–265.

    Google Scholar

    [13] B. Y. He and L. Y. Chen, Super integrable hierarchies associated with spl(2, 1) and Darboux transformations, J. Math. Phys., 2017, 58(12), 123503. DOI: 10.1063/1.5018031.

    CrossRef Google Scholar

    [14] B. B. Hu, W. X. Ma, T. C. Xia and L. Zhang, Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures, Math. Method Appl. Sci., 2018, 41, 1565–1577.

    Google Scholar

    [15] A. Inam and M. ul Hassan, Exact solitons of a N-component discrete coupled integrable system, Theor. Math. Phys.‌, 2023, 214, 36–71.

    Google Scholar

    [16] K. H. Karlsen and Y. Rybalko, On the well-posedness of a nonlocal (two-place) FORQ equation via a two-component peakon system, ‌ J. Math. Anal. Appl., 2024, 529, 127601. DOI: 10.1016/j.jmaa.2023.127601.

    CrossRef Google Scholar

    [17] B. Kupershmidt, Superintegrable systems, Proc. Nat. Acad. Sci. USA, 1984, 81(20), 6562–6563.

    Google Scholar

    [18] J. X. Li and H. F. Wang, A multicomponent generalized nonisospectral super AKNS integrable hierarchy, Theor. Math. Phys., 2024, 221(3), 2083–2108.

    Google Scholar

    [19] Q. P. Liu, Supersymmetric Harry Dym type equations, J. Phys. A: Math. Gen., 1995, 28(8), 245–248.

    Google Scholar

    [20] W. X. Ma, Darboux transformations for a Lax integrable system in 2n-dimensions, Lett. Math. Phys., 1997, 39(1), 33–49.

    Google Scholar

    [21] W. X. Ma, J. S. He and Z. Y. Qin, A supertrace identity and its applications to superingrable systems, J. Math. Phys., 2008. DOI: 10.1063/1.2897036.

    CrossRef Google Scholar

    [22] W. X. Ma, J. H. Meng and H. Q. Zhang, Integrable couplings, variational identities and Hamiltonian formulations, ‌Global J. Math. Sci.‌, 2012, 1(1), 1–17.

    Google Scholar

    [23] W. X. Ma, C. G. Shi, E. A. Appiah, C. X. Li and S. F. Sheng, An integrable generalization of the Kaup-Newell soliton hierarchy, Phys. Scripta, 2014, 89, 085203. DOI: 10.1088/0031-8949/89/8/085203.

    CrossRef Google Scholar

    [24] Z. Popowicz, The fully supersymmetric AKNS equations, J. Phys. A: Math. Gen., 1990, 23(7), 1127–1136.

    Google Scholar

    [25] G. H. M. Roelofs and P. H. M. Kersten, Supersymmetric extensions of the nonlinear Schrödinger equation: Symmetries and coverings, J. Math. Phys., 1992, 33(6), 2185–2206.

    Google Scholar

    [26] A. Savchenko and A. Zabrodin, Multicomponent DKP hierarchy and its dispersionless limit, Lett. Math. Phys., 2025, 115, 1–26.

    Google Scholar

    [27] S. F. Shen, C. X. Li, Y. Y. Jin and W. X. Ma, Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling, J. Math. Phys., 2017, 59, 103503. DOI: 10.1063/1.4990534.

    CrossRef Google Scholar

    [28] H. Z. Sun, Lie Algebras, Lie Superalgebras and their Applications in Physics, Peking University, Beijing, 1999.

    Google Scholar

    [29] G. Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 1989, 30(2), 330–338.

    Google Scholar

    [30] H. F. Wang and B. Y. He, A class of extended Lie superalgebras and their applications, Chaos Solitons Fract., 2023, 168, 113145. DOI: 10.1016/j.chaos.2023.113145.

    CrossRef Google Scholar

    [31] H. F. Wang, J. X. Li, Z. Z. Fang and H. J. Zhou, A novel kind of multi-component nonisospectral super soliton hierarchy with self-consistent sources, to appear in Phys. Fluids.

    Google Scholar

    [32] H. F. Wang and Y. F. Zhang, Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations, J. Comput. Appl. Math., 2023, 420, 114812. DOI: 10.1016/j.cam.2022.114812.

    CrossRef Google Scholar

    [33] H. F. Wang and Y. F. Zhang, A new multi-component integrable coupling and its application to isospectral and nonisospectral problems, Commun. Nonlinear Sci. Numer. Simul., 2022, 105, 106075. DOI: 10.1016/j.cnsns.2021.106075.

    CrossRef Google Scholar

    [34] H. F. Wang, Y. F. Zhang and C. Z. Li, A multi-component super integrable Dirac hierarchy, Phys. Lett. B‌, 2023, 847, 138323. DOI: 10.1016/j.physletb.2023.138323.

    CrossRef Google Scholar

    [35] H. F. Wang, Y. F. Zhang and C. Z. Li, Multi-component super integrable Hamiltonian hierarchies, Physica D‌, 2023, 456, 133918. DOI: 10.1016/j.physd.2023.133918.

    CrossRef Google Scholar

    [36] Z. Y. Yan and H. Q. Zhang, A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems, J. Math. Phys., 2001, 42(1), 330–339.

    Google Scholar

    [37] Y. J. Ye, Z. H. Li, C. X. Li, S. F. Shen and W. X. Ma, A generalized Dirac soliton hierarchy and its bi-Hamiltonian structure, Appl. Math. Lett., 2016, 60, 67–72.

    Google Scholar

    [38] A. Zabrodin, Tau-Function of the Multi-Component CKP Hierarchy, Math. Phys. Anal. Geom., 2024. DOI: 10.1007/s11040-023-09473-6.

    CrossRef Google Scholar

    [39] Y. F. Zhang, J. Q. Mei and H. Y. Guan, A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries, J. Geom. Phys., 2020, 147, 103538. DOI: 10.1016/j.geomphys.2019.103538.

    CrossRef Google Scholar

    [40] Y. F. Zhang and X. Z. Zhang, A scheme for generating nonisospectral integrable hierarchies and its related applications, Acta. Math. Sin.-English Ser.‌, 2021, 37(5), 707–730.

    Google Scholar

    [41] R. G. Zhou, A hierarchy of super AKNS hierarchy related to Lie superalgebra sl(2|1) and a finite dimensional super Hamiltonian system, Mod. Phys. Lett. B‌, 2015, 29(22), 1550126. DOI: 10.1142/S0217984915501262.

    CrossRef Google Scholar

Article Metrics

Article views(87) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint