[1]
|
K. Arrow, L. Hurwicz, H. Uzawa, Studies in Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.
Google Scholar
|
[2]
|
M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 2005, 14, 1-137. doi: 10.1017/S0962492904000212
CrossRef Google Scholar
|
[3]
|
Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems, Computing, 2010, 89, 171-197. doi: 10.1007/s00607-010-0101-4
CrossRef Google Scholar
|
[4]
|
Z. Bai, Optimal paremeters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 2009, 16(6), 447-479. doi: 10.1002/nla.v16:6
CrossRef Google Scholar
|
[5]
|
Z. Bai, G. H. Golub, J. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 2004, 98, 1-32. doi: 10.1007/s00211-004-0521-1
CrossRef Google Scholar
|
[6]
|
Z. Bai, B. Parlett, Z. Wang, ON generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, 102, 1-38. doi: 10.1007/s00211-005-0643-0
CrossRef Google Scholar
|
[7]
|
Z. Bai, G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal., 2007, 27, 1-23. doi: 10.1093/imanum/drl017
CrossRef Google Scholar
|
[8]
|
Z. Bai, Z. Wang, On parameterized inexact Uzawa methods for geneeralized saddle point problems, Linear Algebra Appl., 2008, 428, 2900-2932. doi: 10.1016/j.laa.2008.01.018
CrossRef Google Scholar
|
[9]
|
Y. Cao, M. Jiang, Y. Zheng, A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl., 2011, 18, 875-895. doi: 10.1002/nla.v18.5
CrossRef Google Scholar
|
[10]
|
F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. comput., 2008, 206, 765-771.
Google Scholar
|
[11]
|
H. Fan, B. Zheng, A preconditioned GLHSS iteration method for non-Hermitian singular saddle point problems, Comput. Math. Appl., 2014, 67, 614-626. doi: 10.1016/j.camwa.2013.12.006
CrossRef Google Scholar
|
[12]
|
L. Guo, L. Liu, Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal. Model. Control, 2015, 21, 635-650.
Google Scholar
|
[13]
|
G. H. Golub, X. Wu, J. Yuan, SOR-like methods for augmented systems, BIT Numer. Math., 2001, 41(1), 71-85. doi: 10.1023/A:1021965717530
CrossRef Google Scholar
|
[14]
|
M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differ.Equations, 2018, 264, 3596-3618. doi: 10.1016/j.jde.2017.11.025
CrossRef Google Scholar
|
[15]
|
M. Han, X. Hou, L. Sheng, C. Wang, Theory of rotated equations and applications to a population model, Discrete Cont. Dyn. Syst. -A, 2018, 38, 2171-2185. doi: 10.3934/dcds.2018089
CrossRef Google Scholar
|
[16]
|
Z. Huang, T. Huang, Sepectral properties of the preconditioned AHSS iteration method for generalized saddle point problems, J. Comput. Appl. Math., 2010, 29, 269-295.
Google Scholar
|
[17]
|
F. Li, G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput., 2018, 8, 390-401.
Google Scholar
|
[18]
|
M. Li, J. Wang, Exploring delayed mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 2018, 324, 254-265.
Google Scholar
|
[19]
|
Z. Liang, G. Zhang, Variants of accelerated parameterized inexact Uzawa method for saddle-point problems, BIT Numer. Math., 2015, 56(2), 523-542.
Google Scholar
|
[20]
|
L. Ren, J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron J. Differ. Equations, 2018, 312, 1-22.
Google Scholar
|
[21]
|
H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equations, 2017, 263, 7448-7474. doi: 10.1016/j.jde.2017.08.011
CrossRef Google Scholar
|
[22]
|
B. Wang, F. Meng, Y. Fang, Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations, Appl. Numer. Math., 2017, 119, 164-178. doi: 10.1016/j.apnum.2017.04.008
CrossRef Google Scholar
|
[23]
|
B. Wang, X. Wu, F. Meng, Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations, J. Comput. Appl. Math., 2017, 313, 185-201. doi: 10.1016/j.cam.2016.09.017
CrossRef Google Scholar
|
[24]
|
B. Wang, Exponential Fourier collocation methods for solving first-order differential equations, J. Comput. Appl. Math., 2017, 35, 711-736.
Google Scholar
|
[25]
|
S. Wang, G. Zhang, Preconditioned AHSS iteration method for singular saddle point problems, Numer. Algor., 2013, 63, 521-535. doi: 10.1007/s11075-012-9638-y
CrossRef Google Scholar
|
[26]
|
X. Wu, B. P. B. Silva, J. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 2004, 35, 139-154. doi: 10.1023/B:NUMA.0000021758.65113.f5
CrossRef Google Scholar
|
[27]
|
D. M. Young, Iterative Solution for Large Linear Systems, Academic Press, New York, 1971.
Google Scholar
|
[28]
|
N. Zhang, T Lu, Y. Wei, Semi-convergence analysis of Uzawa methods for singular saddle point problems, J. Comput. Appl. Math., 2014, 255, 334-345. doi: 10.1016/j.cam.2013.05.015
CrossRef Google Scholar
|