2019 Volume 9 Issue 3
Article Contents

Jingtao Li, Chengfeng Ma. PAHSS-PTS ALTERNATING SPLITTING ITERATIVE METHODS FOR NONSINGULAR SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 829-839. doi: 10.11948/2156-907X.20170183
Citation: Jingtao Li, Chengfeng Ma. PAHSS-PTS ALTERNATING SPLITTING ITERATIVE METHODS FOR NONSINGULAR SADDLE POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 829-839. doi: 10.11948/2156-907X.20170183

PAHSS-PTS ALTERNATING SPLITTING ITERATIVE METHODS FOR NONSINGULAR SADDLE POINT PROBLEMS

  • Corresponding author: Email address: macf@fjnu.edu.cn (C. Ma)
  • Fund Project: This research is supported by National Key Research and Development Program of China (2018YFC0603500) and National Science Foundation of China (41725017)
  • In this paper, we propose the PAHSS-PTS alternating splitting iterative methods for nonsingular saddle point problems. Convergence properties of the proposed methods are studied and corresponding convergence results are given under some suitable conditions. Numerical experiments are presented to confirm the theoretical results, which impliy that PAHSS-PTS iterative methods are effective and feasible.
    MSC: 65F10, 65F08, 65F50
  • 加载中
  • [1] K. Arrow, L. Hurwicz, H. Uzawa, Studies in Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.

    Google Scholar

    [2] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 2005, 14, 1-137. doi: 10.1017/S0962492904000212

    CrossRef Google Scholar

    [3] Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems, Computing, 2010, 89, 171-197. doi: 10.1007/s00607-010-0101-4

    CrossRef Google Scholar

    [4] Z. Bai, Optimal paremeters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 2009, 16(6), 447-479. doi: 10.1002/nla.v16:6

    CrossRef Google Scholar

    [5] Z. Bai, G. H. Golub, J. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 2004, 98, 1-32. doi: 10.1007/s00211-004-0521-1

    CrossRef Google Scholar

    [6] Z. Bai, B. Parlett, Z. Wang, ON generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, 102, 1-38. doi: 10.1007/s00211-005-0643-0

    CrossRef Google Scholar

    [7] Z. Bai, G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal., 2007, 27, 1-23. doi: 10.1093/imanum/drl017

    CrossRef Google Scholar

    [8] Z. Bai, Z. Wang, On parameterized inexact Uzawa methods for geneeralized saddle point problems, Linear Algebra Appl., 2008, 428, 2900-2932. doi: 10.1016/j.laa.2008.01.018

    CrossRef Google Scholar

    [9] Y. Cao, M. Jiang, Y. Zheng, A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl., 2011, 18, 875-895. doi: 10.1002/nla.v18.5

    CrossRef Google Scholar

    [10] F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. comput., 2008, 206, 765-771.

    Google Scholar

    [11] H. Fan, B. Zheng, A preconditioned GLHSS iteration method for non-Hermitian singular saddle point problems, Comput. Math. Appl., 2014, 67, 614-626. doi: 10.1016/j.camwa.2013.12.006

    CrossRef Google Scholar

    [12] L. Guo, L. Liu, Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal. Model. Control, 2015, 21, 635-650.

    Google Scholar

    [13] G. H. Golub, X. Wu, J. Yuan, SOR-like methods for augmented systems, BIT Numer. Math., 2001, 41(1), 71-85. doi: 10.1023/A:1021965717530

    CrossRef Google Scholar

    [14] M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differ.Equations, 2018, 264, 3596-3618. doi: 10.1016/j.jde.2017.11.025

    CrossRef Google Scholar

    [15] M. Han, X. Hou, L. Sheng, C. Wang, Theory of rotated equations and applications to a population model, Discrete Cont. Dyn. Syst. -A, 2018, 38, 2171-2185. doi: 10.3934/dcds.2018089

    CrossRef Google Scholar

    [16] Z. Huang, T. Huang, Sepectral properties of the preconditioned AHSS iteration method for generalized saddle point problems, J. Comput. Appl. Math., 2010, 29, 269-295.

    Google Scholar

    [17] F. Li, G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput., 2018, 8, 390-401.

    Google Scholar

    [18] M. Li, J. Wang, Exploring delayed mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 2018, 324, 254-265.

    Google Scholar

    [19] Z. Liang, G. Zhang, Variants of accelerated parameterized inexact Uzawa method for saddle-point problems, BIT Numer. Math., 2015, 56(2), 523-542.

    Google Scholar

    [20] L. Ren, J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron J. Differ. Equations, 2018, 312, 1-22.

    Google Scholar

    [21] H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equations, 2017, 263, 7448-7474. doi: 10.1016/j.jde.2017.08.011

    CrossRef Google Scholar

    [22] B. Wang, F. Meng, Y. Fang, Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations, Appl. Numer. Math., 2017, 119, 164-178. doi: 10.1016/j.apnum.2017.04.008

    CrossRef Google Scholar

    [23] B. Wang, X. Wu, F. Meng, Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations, J. Comput. Appl. Math., 2017, 313, 185-201. doi: 10.1016/j.cam.2016.09.017

    CrossRef Google Scholar

    [24] B. Wang, Exponential Fourier collocation methods for solving first-order differential equations, J. Comput. Appl. Math., 2017, 35, 711-736.

    Google Scholar

    [25] S. Wang, G. Zhang, Preconditioned AHSS iteration method for singular saddle point problems, Numer. Algor., 2013, 63, 521-535. doi: 10.1007/s11075-012-9638-y

    CrossRef Google Scholar

    [26] X. Wu, B. P. B. Silva, J. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 2004, 35, 139-154. doi: 10.1023/B:NUMA.0000021758.65113.f5

    CrossRef Google Scholar

    [27] D. M. Young, Iterative Solution for Large Linear Systems, Academic Press, New York, 1971.

    Google Scholar

    [28] N. Zhang, T Lu, Y. Wei, Semi-convergence analysis of Uzawa methods for singular saddle point problems, J. Comput. Appl. Math., 2014, 255, 334-345. doi: 10.1016/j.cam.2013.05.015

    CrossRef Google Scholar

Tables(3)

Article Metrics

Article views(2505) PDF downloads(307) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint