Citation: | Jingdong Wei, Jiangbo Zhou, Lixin Tian. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF TRAVELING WAVE SOLUTION FOR KORTEWEG-DE VRIES-BURGERS EQUATION WITH DISTRIBUTED DELAY[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 840-852. doi: 10.11948/2156-907X.20180017 |
[1] | P. Ashwin, M.V. Bartuccelli, T. J. Bridges and S. A. Gourley, Traveling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 2002, 53, 103-122. doi: 10.1007/s00033-002-8145-8 |
[2] | N. Berglunda and B. Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differ. Equations, 2003, 191, 1-54. doi: 10.1016/S0022-0396(03)00020-2 |
[3] | J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Trans. R. Neth. Acad. Sci., 1939, 17, 1-53. |
[4] | M. Caubergh and F. Dumortier, Hilbert's 16th problem for classical Lienard equations of even degree, J. Differ. Equations, 2008, 244, 1359-1394. doi: 10.1016/j.jde.2007.11.011 |
[5] | J. C. Ceballos, M. Sepulveda and O. P. V. Villagran, The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results, Appl. Math. Comput., 2007, 190, 912-936. |
[6] | F. Dumortier, Compactification and desingularization of spaces of polynomial Lienard equations, J. Differ. Equations, 2006, 224, 296-313. doi: 10.1016/j.jde.2005.08.011 |
[7] | F. Dumortier and R. Roussarie, Multiple canard cycles in generalized Lienard equations, J. Differ. Equations, 2001, 174, 1-29. doi: 10.1006/jdeq.2000.3947 |
[8] | Z. S. Feng, The first-integral method to the Burgers-Korteweg-de Vries equation, J. Phys. A: Math. Gen., 2002, 35, 343-350. doi: 10.1088/0305-4470/35/2/312 |
[9] | N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 1979, 31, 53-98. doi: 10.1016/0022-0396(79)90152-9 |
[10] | F. Feudel and H. Steudel, Nonexistence of prolongation structure for the Korteweg-de Vries-Burgers equation, Phys. Lett. A, 1985, 107, 5-8. doi: 10.1016/0375-9601(85)90234-8 |
[11] | Y. G. Fu and Z. G. Liu, Persistence of traveling fronts of KdV-Burgers-Kuramoto equation, Appl. Math. Comput., 2010, 216, 2199-2206. |
[12] | S. A. Gourley, Traveling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 2000, 32, 843-853. doi: 10.1016/S0895-7177(00)00175-8 |
[13] | S. A. Gourley and M.A.J. Chaplain, Traveling fronts in a food-limited population model with time delay, Proc. Roy. Soc. Edinb. A, 2002, 132, 75-89. doi: 10.1017/S0308210500001530 |
[14] | S. A. Gourley and S.G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: a competition model, SIAM. J. Math. Anal., 2003, 35, 806-822. doi: 10.1137/S003614100139991 |
[15] | J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Appl. Math. Sci., vol. 99, Springer, New York, 1993. |
[16] | G. Hek, Geometric singular perturbation theory in biological practice, J. Math. Biol., 2010, 60, 347-386. doi: 10.1007/s00285-009-0266-7 |
[17] | R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge, Cambridge University Press, 1997. |
[18] | C. K. R. T. Jones, Geometrical singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Lecture Notes in Mathematics, vol. 1609, Springer, New York, 1995. |
[19] | D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag. 1895, 39, 422-443. doi: 10.1080/14786449508620739 |
[20] | C. Z. Li and H. P. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differ. Equations, 2013, 254, 879-910. doi: 10.1016/j.jde.2012.10.003 |
[21] | J. B. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. |
[22] | X. Z. Li and M. L. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, 2007, 361, 115-118. doi: 10.1016/j.physleta.2006.09.022 |
[23] |
Z. L. Li, Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by $\frac{G'}{G}$-expansion method, Appl. Math. Comput., 2010, 217, 1398-1403.
$\frac{G'}{G}$-expansion method" target="_blank">Google Scholar |
[24] | G. Lin and W. T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with delays, J. Differ. Equations, 2008, 244, 487-513. doi: 10.1016/j.jde.2007.10.019 |
[25] | N. Lu and C. C. Zeng, Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differ. Equations, 2011, 250, 4124-4176. doi: 10.1016/j.jde.2011.02.001 |
[26] | G. Y. Lv and M. X. Wang, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model, Nonlinear Anal-Real., 2010, 11, 2035-2043. doi: 10.1016/j.nonrwa.2009.05.006 |
[27] | P. Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations, J. Differ. Equations, 2011, 250, 1000-1025. doi: 10.1016/j.jde.2010.07.022 |
[28] | M. B. A. Mansour, Geometric construction of traveling waves in a generalized nonlinear dispersive-dissipative equation, J. Geom. Phys., 2013, 69, 116-122. doi: 10.1016/j.geomphys.2013.03.004 |
[29] | M. B. A. Mansour, Traveling wave solutions for a singularly perturbed Burgers-KdV equation, Pramana J. Phys., 2009, 73, 799-806. doi: 10.1007/s12043-009-0148-y |
[30] | M. B. A. Mansour, Traveling waves for a dissipative modified KdV equation, J. Egypt. Math. Soc., 2012, 20, 134-138. doi: 10.1016/j.joems.2012.08.002 |
[31] | T. Ogawa, Traveling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima J. Math., 1994, 24, 401-422. doi: 10.32917/hmj/1206128032 |
[32] | C. H. Ou and J. H. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differ. Equations, 2007, 238, 219-261. |
[33] | S. G. Ruan and D. M. Xiao, Stability of steady states and existence of traveling wave in a vector disease model, Proc. Roy. Soc. Edinb. A, 2004, 134, 991-1011. doi: 10.1017/S0308210500003590 |
[34] | H. L. Smith and X. Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31, 514-534. doi: 10.1137/S0036141098346785 |
[35] | H. Triki, T. R. Taha and A. M. Wazwaz, Solitary wave solutions for a generalized KdV-mKdV equation with variable coefficients, Math. Comput. Simul., 2010, 80, 1867-1873. doi: 10.1016/j.matcom.2010.02.001 |
[36] | F. Verhulst, Singular perturbation methods for slow-fast dynamics, Nonlinear Dyn., 2007, 50, 747-753. doi: 10.1007/s11071-007-9236-z |
[37] |
H. D. Wahlquist, B$\ddot{a}$klund transformations for solitons of the Korteweg-de Vries equation, Phys. Rev. Lett., 1973, 31, 1386-1390. doi: 10.1103/PhysRevLett.31.1386
CrossRef $\ddot{a}$klund transformations for solitons of the Korteweg-de Vries equation" target="_blank">Google Scholar |
[38] | J. D. Wei, L. T. Tian, J. B. Zhou and Z. L. Zhen, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nolocal delay, Chaos, Solitons & Fractals, 2017, 103, 536-543. |
[39] | J. D. Wei, L. T. Tian, J. B. Zhou, Z. L. Zhen and J. Xu, Existence and asymptotic behavior of traveling wave fronts for a food-limited population model with spatio-temporal delay, Japan J. Indust. Appl. Math., 2017, 34, 305-320. doi: 10.1007/s13160-017-0244-1 |
[40] | J. H. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., vol. 119, Springer-Verlag, New York, 1996. |
[41] |
Z. Yan, Modified nonlinearly dispersive $mK(m, n, k)$ equations: Ⅰ. New compacton solutions and solitary pattern solutions, Comput. Phys. Commun., 2003, 152, 25-33. doi: 10.1016/S0010-4655(02)00794-4
CrossRef $mK(m, n, k)$ equations: Ⅰ. New compacton solutions and solitary pattern solutions" target="_blank">Google Scholar |
[42] |
Z. Yan, Modified nonlinearly dispersive $mK(m, n, k)$ equations: Ⅱ. Jacobi elliptic function solutions, Comput. Phys. Commun., 2003, 153, 1-16. doi: 10.1016/S0010-4655(02)00851-2
CrossRef $mK(m, n, k)$ equations: Ⅱ. Jacobi elliptic function solutions" target="_blank">Google Scholar |
[43] | Z. H. Zhao, Solitary waves of the generalized KdV equation with distributed delays, J. Math. Anal. Appl., 2008, 344, 32-34. doi: 10.1016/j.jmaa.2008.02.036 |
[44] | Z. H. Zhao and Y. T. Xu, Solitary waves for Korteweg-de Vries equation with small delay, J. Math. Anal. Appl., 2010, 368, 43-53. doi: 10.1016/j.jmaa.2010.02.014 |