2019 Volume 9 Issue 2
Article Contents

Zhibo Cheng, Zhonghua Bi. STUDY ON A KIND OF $P$-LAPLACIAN NEUTRAL DIFFERENTIAL EQUATION WITH MULTIPLE VARIABLE COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 501-525. doi: 10.11948/2156-907X.20170234
Citation: Zhibo Cheng, Zhonghua Bi. STUDY ON A KIND OF $P$-LAPLACIAN NEUTRAL DIFFERENTIAL EQUATION WITH MULTIPLE VARIABLE COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 501-525. doi: 10.11948/2156-907X.20170234

STUDY ON A KIND OF $P$-LAPLACIAN NEUTRAL DIFFERENTIAL EQUATION WITH MULTIPLE VARIABLE COEFFICIENTS

  • Corresponding author: Email address: czb_1982@126.com (Z. Cheng) 
  • Fund Project: Foundation of China (11501170), China Postdoctoral Science Foundation funded project (2016M590886) and the Universities of Henan Provience (NSFRF170302)
  • In this paper, we first discuss some properties of the neutral operator with multiple variable coefficients $(Ax)(t): = x(t)-\sum\limits_{i = 1}^{n}c_i(t)x(t-\delta_i)$. Afterwards, by using an extension of Mawhin's continuation theorem, a kind of second order $p$-Laplacian neutral differential equation with multiple variable coefficients as follows $\left(\phi_p\left(x(t)-\sum\limits_{i = 1}^{n}c_i(t)x(t-\delta_i)\right)'\right)' = \tilde{f}(t,x(t),x'(t)) $ is studied. Finally, we consider the existence of periodic solutions for two kinds of second-order $p$-Laplacian neutral Rayleigh equations with singularity and without singularity. Some new results on the existence of periodic solutions are obtained. It is worth noting that $c_i$ ($i = 1, \cdots, n$) are no longer constants which are different from the corresponding ones of past work.
    MSC: 34C25, 34B16, 34B18
  • 加载中
  • [1] A. Anane, O. Chakrone and L. Moutaouekkil, Periodic solutions for pLaplacian neutral functional differential equations with multiple deviating arguments, Electron. J. Differential Equations, 2012,148, 1-12.

    Google Scholar

    [2] A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(7), 3061-3069. doi: 10.1016/j.cnsns.2011.11.026

    CrossRef Google Scholar

    [3] B. Bacóca, B. Dorociaková and R. Olach, Existence of positive solutions of nonlinear neutral differential equations asymptotic to zero, Rocky Mountain J. Math., 2012, 42(5), 1421-1430. doi: 10.1216/RMJ-2012-42-5-1421

    CrossRef Google Scholar

    [4] Z. Cheng, J. Ren, Existence of periodic solution for fourth-order Liénard type p-Laplacian generalized neutral differential equation with variable parameter, J. Appl. Anal. Comput., 2015, 5(4), 704-720.

    Google Scholar

    [5] B. Du, L. Guo, W. Ge and S. Lu, Periodic solution for generalized Li´enard neutral equation with variable parameter, Nonlinear Anal. TMA, 2009, 70(6), 2387-2394. doi: 10.1016/j.na.2008.03.021

    CrossRef Google Scholar

    [6] B. Du, Periodic solution to p-Laplacian neutral Li´enard type equation with variable parameter, Math. Slovaca, 2013, 63(2), 381-395.

    Google Scholar

    [7] F. Gao and W. Zhang, Periodic solutions for a p-Laplacian-like NFDE system, J. Franklin Inst., 2011,348(6), 1020-1034. doi: 10.1016/j.jfranklin.2011.03.007

    CrossRef Google Scholar

    [8] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Equations, Springer, Berlin, 1977.

    Google Scholar

    [9] W. Ge and J. Ren, An extension of Mawhin's continuation and its application to boundary value problems with a p-Laplacian, Nonlinear Anal., 2004, 58(3-4), 447-488.

    Google Scholar

    [10] F. Kong, S. Lu and Z. Liang, Existence of positive periodic solutions for neutral Li´enard differential equations with a singularity, Electron. J. Differential Equations, 2015,242, 1-12.

    Google Scholar

    [11] Y. Li and B. Liu, Periodic solutions of dissipative neutral differential systems with singular potential and p-Laplacian, Studia Sci. Math. Hungar., 2008, 45(2), 251-271.

    Google Scholar

    [12] S. Lu and W. Ge, Existence of periodic solutions for a kind of second-order neutral function differential equation, Appl. Math Comput., 2004,157(2), 433-448.

    Google Scholar

    [13] S. Lu, Existence of periodic solutions for a p-Laplacian neutral functional differential equation, Nonlinear Anal. TMA, 2009, 70(1), 231-243. doi: 10.1016/j.na.2007.11.053

    CrossRef Google Scholar

    [14] R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 1998,145(2), 367-393. doi: 10.1006/jdeq.1998.3425

    CrossRef Google Scholar

    [15] S. Peng, Periodic solutions for p-Laplacian neutral Rayleigh equation with a deviating argument, Nonlinear Anal., 2008, 69(5-6), 1675-1685. doi: 10.1016/j.na.2007.07.007

    CrossRef Google Scholar

    [16] K. Wang and Y. Zhu, Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation, J. Franklin Inst., 2010,347(7), 1158-1170. doi: 10.1016/j.jfranklin.2010.04.014

    CrossRef Google Scholar

    [17] J. Wu and Z. Wang, Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 2007,329(1), 677-689.

    Google Scholar

    [18] Y. Xin and Z. Cheng, Study on a kind of neutral Rayleigh equation with singularity, Bound. Value Probl., 2017, 2017(92), 1-11.

    Google Scholar

    [19] T. Xiang and R. Yuan, Existence of periodic solutions for p-Laplacian neutral functional equation with multiple deviating arguments, Topol. Methods Nonlinear Anal., 2011, 37(2), 235-258.

    Google Scholar

    [20] M. Zhang, Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl., 1995,189(2), 378-392 doi: 10.1006/jmaa.1995.1025

    CrossRef Google Scholar

    [21] Y. Zhu and S. Lu, Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments, J. Math. Anal. Appl., 2007,325(1), 377-385. doi: 10.1016/j.jmaa.2005.10.084

    CrossRef Google Scholar

Article Metrics

Article views(2164) PDF downloads(618) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint