[1]
|
A. Anane, O. Chakrone and L. Moutaouekkil, Periodic solutions for pLaplacian neutral functional differential equations with multiple deviating arguments, Electron. J. Differential Equations, 2012,148, 1-12.
Google Scholar
|
[2]
|
A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(7), 3061-3069. doi: 10.1016/j.cnsns.2011.11.026
CrossRef Google Scholar
|
[3]
|
B. Bacóca, B. Dorociaková and R. Olach, Existence of positive solutions of nonlinear neutral differential equations asymptotic to zero, Rocky Mountain J. Math., 2012, 42(5), 1421-1430. doi: 10.1216/RMJ-2012-42-5-1421
CrossRef Google Scholar
|
[4]
|
Z. Cheng, J. Ren, Existence of periodic solution for fourth-order Liénard type p-Laplacian generalized neutral differential equation with variable parameter, J. Appl. Anal. Comput., 2015, 5(4), 704-720.
Google Scholar
|
[5]
|
B. Du, L. Guo, W. Ge and S. Lu, Periodic solution for generalized Li´enard neutral equation with variable parameter, Nonlinear Anal. TMA, 2009, 70(6), 2387-2394. doi: 10.1016/j.na.2008.03.021
CrossRef Google Scholar
|
[6]
|
B. Du, Periodic solution to p-Laplacian neutral Li´enard type equation with variable parameter, Math. Slovaca, 2013, 63(2), 381-395.
Google Scholar
|
[7]
|
F. Gao and W. Zhang, Periodic solutions for a p-Laplacian-like NFDE system, J. Franklin Inst., 2011,348(6), 1020-1034. doi: 10.1016/j.jfranklin.2011.03.007
CrossRef Google Scholar
|
[8]
|
R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Equations, Springer, Berlin, 1977.
Google Scholar
|
[9]
|
W. Ge and J. Ren, An extension of Mawhin's continuation and its application to boundary value problems with a p-Laplacian, Nonlinear Anal., 2004, 58(3-4), 447-488.
Google Scholar
|
[10]
|
F. Kong, S. Lu and Z. Liang, Existence of positive periodic solutions for neutral Li´enard differential equations with a singularity, Electron. J. Differential Equations, 2015,242, 1-12.
Google Scholar
|
[11]
|
Y. Li and B. Liu, Periodic solutions of dissipative neutral differential systems with singular potential and p-Laplacian, Studia Sci. Math. Hungar., 2008, 45(2), 251-271.
Google Scholar
|
[12]
|
S. Lu and W. Ge, Existence of periodic solutions for a kind of second-order neutral function differential equation, Appl. Math Comput., 2004,157(2), 433-448.
Google Scholar
|
[13]
|
S. Lu, Existence of periodic solutions for a p-Laplacian neutral functional differential equation, Nonlinear Anal. TMA, 2009, 70(1), 231-243. doi: 10.1016/j.na.2007.11.053
CrossRef Google Scholar
|
[14]
|
R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 1998,145(2), 367-393. doi: 10.1006/jdeq.1998.3425
CrossRef Google Scholar
|
[15]
|
S. Peng, Periodic solutions for p-Laplacian neutral Rayleigh equation with a deviating argument, Nonlinear Anal., 2008, 69(5-6), 1675-1685. doi: 10.1016/j.na.2007.07.007
CrossRef Google Scholar
|
[16]
|
K. Wang and Y. Zhu, Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation, J. Franklin Inst., 2010,347(7), 1158-1170. doi: 10.1016/j.jfranklin.2010.04.014
CrossRef Google Scholar
|
[17]
|
J. Wu and Z. Wang, Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 2007,329(1), 677-689.
Google Scholar
|
[18]
|
Y. Xin and Z. Cheng, Study on a kind of neutral Rayleigh equation with singularity, Bound. Value Probl., 2017, 2017(92), 1-11.
Google Scholar
|
[19]
|
T. Xiang and R. Yuan, Existence of periodic solutions for p-Laplacian neutral functional equation with multiple deviating arguments, Topol. Methods Nonlinear Anal., 2011, 37(2), 235-258.
Google Scholar
|
[20]
|
M. Zhang, Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl., 1995,189(2), 378-392 doi: 10.1006/jmaa.1995.1025
CrossRef Google Scholar
|
[21]
|
Y. Zhu and S. Lu, Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments, J. Math. Anal. Appl., 2007,325(1), 377-385. doi: 10.1016/j.jmaa.2005.10.084
CrossRef Google Scholar
|