2019 Volume 9 Issue 2
Article Contents

Chunyan Ji, Daqing Jiang, Yanan Zhao. QUALITATIVE ANALYSIS OF STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 475-500. doi: 10.11948/2156-907X.20170230
Citation: Chunyan Ji, Daqing Jiang, Yanan Zhao. QUALITATIVE ANALYSIS OF STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 475-500. doi: 10.11948/2156-907X.20170230

QUALITATIVE ANALYSIS OF STOCHASTIC RATIO-DEPENDENT PREDATOR-PREY SYSTEMS

  • Corresponding author: Email address:chunyanji80@hotmail.com (C. Ji) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11601043, 11871473, 11601038) China Postdoctoral Science Foundation (2016M590243), the fifth period "333 project" research program of Jiangsu Province of 2017, China (BRA2017468), Qing Lan Project of Jiangsu Province of 2016 and 2017, China, and Jiangsu government scholarship for overseas studies, China
  • In this paper, two stochastic ratio-dependent predator-prey systems are considered. One is just with white noise, and the other one is taken into both white noise and color noise account. Sufficient criteria for extinction and persistence in time average are established. The critical value between persistence and extinction is obtained. Moreover, we show that there is stationary distribution for the stochastic system with regime-switching. Finally, examples and simulations are carried on to verify these results.
    MSC: 34F05, 34E10
  • 加载中
  • [1] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratiodependence, J. Theoret. Biol., 1989,139(3), 311-326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [2] R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, Am. Nat., 1991,138(5), 1287-1296. doi: 10.1086/285286

    CrossRef Google Scholar

    [3] A. A. Berryman, The origins and evolution of predator-prey theory, Ecology, 1992, 73(5), 1530-1535. doi: 10.2307/1940005

    CrossRef Google Scholar

    [4] F. Berezovskaya, G. Karev and R. Arditi, Parametric analysis of the ratiodependent predator-prey model, J. Math. Biol., 2001, 43(3), 221-246. doi: 10.1007/s002850000078

    CrossRef Google Scholar

    [5] M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 2005, 18(2), 913-936. doi: 10.1088/0951-7715/18/2/022

    CrossRef Google Scholar

    [6] M. Bandyopadhyay and C. G. Chakrabarti, Deterministic and stochastic analysis of a nonlinear prey-predator system, J. Biol. Syst., 2003, 11(2), 161-172. doi: 10.1142/S0218339003000816

    CrossRef Google Scholar

    [7] L. Bai, J. S. Li, K. Zhang and W. J. Zhao, Analysis of a stochastic ratiodependent predator-prey model driven by Lévy noise, Appl. Math. Comput., 2014,233(1), 480-493.

    Google Scholar

    [8] J. M. Cushing, Periodic time-dependent predator-prey system, SIAM J. Appl. Math., 1977, 32(1), 82-95.

    Google Scholar

    [9] J. Cui, Permanence of predator-prey system with periodic coefficients, Math. Comput. Modelling, 2005, 42(1-2), 87-98. doi: 10.1016/j.mcm.2005.03.001

    CrossRef Google Scholar

    [10] J. Cui and Y. Takeuchi, Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 2006,317(2), 464-474. doi: 10.1016/j.jmaa.2005.10.011

    CrossRef Google Scholar

    [11] N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J. Differential Equations, 2014,257(6), 2078-2101. doi: 10.1016/j.jde.2014.05.029

    CrossRef Google Scholar

    [12] N. H. Du, N. H. Dang and N. T. Dieu, On stability in distribution of stochastic differential delay equations with Markovian switching, Systems Control Lett., 2014, 65(1), 43-49.

    Google Scholar

    [13] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

    Google Scholar

    [14] M. Fan, Q. Wang and X. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proc. Roy. Soc. Edin-burgh Sect. A, 2003,133(1), 97-118. doi: 10.1017/S0308210500002304

    CrossRef Google Scholar

    [15] G. Guo and J. Wu, The effect of mutual interference between predators on a predator-prey model with diffusion, J. Math. Anal. Appl., 2012,389(1), 179-194. doi: 10.1016/j.jmaa.2011.11.044

    CrossRef Google Scholar

    [16] L. R. Ginzburg and H. R. Akcakaya, Consequences of ratio-dependent predation for steady state properties of ecosystems, Ecology, 1992, 73(5), 1536-1543. doi: 10.2307/1940006

    CrossRef Google Scholar

    [17] I. Hanski, The functional response of predator: worries about scale, Trends Ecol. Evol., 1991, 6(5), 141-142. doi: 10.1016/0169-5347(91)90052-Y

    CrossRef Google Scholar

    [18] S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the MichaelisMenten-type ratio-dependent predator-prey system, J. Math. Biol., 2001, 42(6), 489-506. doi: 10.1007/s002850100079

    CrossRef Google Scholar

    [19] Q. X. Han and D. Q. Jiang, Periodic solution for stochastic non-autonomous multispecies Lotka-Volterra mutualism type ecosystem, Appl. Math. Comput., 2015,262(1), 204-217.

    Google Scholar

    [20] K. Ioannis and E. S. Steven, Brownian Motion and Stochastic Calculus, second ed, Springer-Verlag, New York, 1991.

    Google Scholar

    [21] M. Jovanovic and M. Krstic, Analysis of non-autonomous stochastic Gompertz model with delay, Appl. Math. Comput., 2014,242(1), 101-108.

    Google Scholar

    [22] C. Y. Ji, D. Q. Jiang and X. Y. Li, Qualitative analysis of a stochastic ratiodependent predator-prey system, J. Comput. Appl. Math., 2001,235(5), 1326-1341.

    Google Scholar

    [23] D. Jiang, N. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2008,340(1), 588-597. doi: 10.1016/j.jmaa.2007.08.014

    CrossRef Google Scholar

    [24] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 1998, 36(4), 389-406. doi: 10.1007/s002850050105

    CrossRef Google Scholar

    [25] B. Li and Y. Kuang, Heteroclinic bifercation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 2007, 67(5), 1453-1464. doi: 10.1137/060662460

    CrossRef Google Scholar

    [26] H. Y. Li and Z. K. She, Uniqueness of periodic solutions of a nonautonomous density-dependent predator-prey system, J. Math. Anal. Appl., 2015,422(2), 886-905. doi: 10.1016/j.jmaa.2014.09.008

    CrossRef Google Scholar

    [27] M. Liu and K. Wang, The threshold between permanence and extinction for a stochastic logistic model with regime switching, J. Appl. Math. Comput., 2013, 43(1-2), 329-349. doi: 10.1007/s12190-013-0666-0

    CrossRef Google Scholar

    [28] Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 2007,334(1), 69-84. doi: 10.1016/j.jmaa.2006.12.032

    CrossRef Google Scholar

    [29] J. L. Lv and K. Wang, A stochastic ratio-dependent predator-prey model under regime switching, J. Inequal. Appl., 2011, 2011(1), 1-14.

    Google Scholar

    [30] X. Mao, Stochastic Differential Equations and Applications, Horwood, New York, 1997.

    Google Scholar

    [31] A. Settati and A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 2014,244(1), 235-243.

    Google Scholar

    [32] Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predatorprey system, J. Math. Biol., 2005, 50(6), 699-712. doi: 10.1007/s00285-004-0307-1

    CrossRef Google Scholar

    [33] M. Vasilova, Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay, Math. Comput. Model., 2013, 57(3-4), 764-781. doi: 10.1016/j.mcm.2012.09.002

    CrossRef Google Scholar

    [34] Q. Wang, M. Fan and K. Wang, Dynamics of a class of nonautonomous semiratio-dependent predator-prey systems with functional responses, J. Math. Anal. Appl., 2003,278(2), 443-471. doi: 10.1016/S0022-247X(02)00718-7

    CrossRef Google Scholar

    [35] D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 2001, 43(3), 268-290. doi: 10.1007/s002850100097

    CrossRef Google Scholar

    [36] A. Yagi and T. Viet Ton, Dynamic of a stochastic predator-prey population, Appl. Math. Comput., 2011,218(7), 3100-3109.

    Google Scholar

    [37] J. Zhao and J. Jiang, Permanence in nonautonomous Lotka-Volterra system with predator-prey, Appl. Math. Comput., 2004,152(1), 99-109.

    Google Scholar

    [38] L. Zu, D. Q. Jiang, D. O'Regan and B. Ge, Periodic solution for a nonautonomous Lotka-Volterra predator-prey model with random perturbation, J. Math. Anal. Appl., 2015,430(1), 428-437. doi: 10.1016/j.jmaa.2015.04.058

    CrossRef Google Scholar

    [39] C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 2007, 46(4), 1155-1179. doi: 10.1137/060649343

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2930) PDF downloads(697) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint