[1]
|
K. B. Blyuss, On a model of spatial spread of epidemics with long-distance travel, Phys. Lett. A, 2005, 345(1–3), 129–136. doi: 10.1016/j.physleta.2005.07.004
CrossRef Google Scholar
|
[2]
|
E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 1995, 33(3), 250–260.
Google Scholar
|
[3]
|
M. Cui, T. Ma and X. Li, Spatial behavior of an epidemic model with migration, Nonlinear Dynam., 2011, 64(4), 331–338. doi: 10.1007/s11071-010-9864-6
CrossRef Google Scholar
|
[4]
|
V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 1978, 42(1–2), 43–61. doi: 10.1016/0025-5564(78)90006-8
CrossRef Google Scholar
|
[5]
|
Q. Gan, R. Xu and P. Yang, Travelling waves of a delayed SIRS epidemic model with spatial diffusion, Nonlinear Anal.-Real., 2011, 12(1), 52–68. doi: 10.1016/j.nonrwa.2010.05.035
CrossRef Google Scholar
|
[6]
|
M. Kermack and A. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. A, 1927, 115 (4), 700–721.
Google Scholar
|
[7]
|
Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543–568. doi: 10.1007/s00285-010-0346-8
CrossRef Google Scholar
|
[8]
|
Y. Li, W. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pur. Appl. Anal., 2015, 14(3), 1001–1022. doi: 10.3934/cpaa
CrossRef Google Scholar
|
[9]
|
W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Int. Equ. Appl., 2014, 26(2), 243–273. doi: 10.1216/JIE-2014-26-2-243
CrossRef Google Scholar
|
[10]
|
Y. Li, W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput. 2014, 247, 723–740.
Google Scholar
|
[11]
|
X. Tian and R. Xu, Traveling wave solutions for a delayed SIRS infectious diseasemodel with nonlocal diffusion and nonlinear incidence, Abstr. Appl. Anal., 2014, Article ID 795320.https://www.researchgate.net/publication/270625817_Traveling_Wave_Solutions_for_a_Delayed_SIRS_Infectious_Disease_Model_with_Nonlocal_Diffusion_and_Nonlinear_Incidence
Google Scholar
|
[12]
|
X. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Cont. Dyn.-A, 2012, 32(9), 3303–3324. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[13]
|
P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equations, 2006, 229(1), 270–296.
Google Scholar
|
[14]
|
Z. Wang, W. Li and S. Ruan, Travelling wave fronts in reaction diffusion systems with spatio-temporal delays, J. Differ. Equations, 2006, 222(1), 185–232.
Google Scholar
|
[15]
|
J. Wang, W. Li and F. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci. Numer. Simulat., 2015, 27(1–3), 136–152. doi: 10.1016/j.cnsns.2015.03.005
CrossRef Google Scholar
|
[16]
|
R. Xu and Z. Ma, Stability of a delayed SIRS epidemic modelwith a nonlinear incidence rate, Chaos, Soliton. Fract., 2009, 41(5), 2319–2325. doi: 10.1016/j.chaos.2008.09.007
CrossRef Google Scholar
|
[17]
|
J. Yang, S. Liang and Y. Zhang, Travelling waves of a delayedSIR epidemic model with nonlinear incidence rate and spatialdiffusion, PLoS ONE, 2011, 6(6), Article ID e21128. doi: 10.1371/journal.pone.0021128
CrossRef Google Scholar
|
[18]
|
F. Yang, Y. Li, W. Li and Z. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Cont. Dyn.-B, 2013, 18(7), 1969–1993. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[19]
|
X. Yu, C. Wu and P. Weng, Traveling waves for a SIRS modelwith nonlocal diffusion, Int. J. Biomath., 2012, 5(5), Article ID 1250036. doi: 10.1142/S1793524511001787
CrossRef Google Scholar
|
[20]
|
S. Zhang and R. Xu, Travelling waves and global attractivityof an SIRS disease model with spatial diffusion and temporary immunity, Appl. Math. Comput., 2013, 224(1), 635–651.
Google Scholar
|
[21]
|
K. Zhou and Q. Wang, Existence of traveling waves for a delayed SIRS epidemicdiffusion model with saturation incidence rate, Abstr. Appl. Anal., 2014, Article ID 369072.
Google Scholar
|
[22]
|
E. Zeidler, Nonlinear Functional Analysis and its Application, I, Fixed-point Theorems, Springer-Verlag, New York, 1986.
Google Scholar
|