2019 Volume 9 Issue 2
Article Contents

Dianli Zhao, Sanling Yuan. THRESHOLD DYNAMICS OF THE STOCHASTIC EPIDEMIC MODEL WITH JUMP-DIFFUSION INFECTION FORCE[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 440-451. doi: 10.11948/2156-907X.20160269
Citation: Dianli Zhao, Sanling Yuan. THRESHOLD DYNAMICS OF THE STOCHASTIC EPIDEMIC MODEL WITH JUMP-DIFFUSION INFECTION FORCE[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 440-451. doi: 10.11948/2156-907X.20160269

THRESHOLD DYNAMICS OF THE STOCHASTIC EPIDEMIC MODEL WITH JUMP-DIFFUSION INFECTION FORCE

  • Corresponding author: Email address:Tc zhaodianli@139.com(D. Zhao) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11671260)
  • This paper formulates a stochastic SIR epidemic model by supposing that the infection force is perturbed by Brown motion and Lévy jumps. The globally positive and bounded solution is proved firstly by constructing the suitable Lyapunov function. Then, a stochastic basic reproduction number $ R_0^{L} $ is derived, which is less than that for the deterministic model and the stochastic model driven by Brown motion. Analytical results show that the disease will die out if $ R_0^{L}<1 $, and $ R_0^{L}>1 $ is the necessary and sufficient condition for persistence of the disease. Theoretical results and numerical simulations indicate that the effects of Lévy jumps may lead to extinction of the disease while the deterministic model and the stochastic model driven by Brown motion both predict persistence. Additionally, the method developed in this paper can be used to investigate a class of related stochastic models driven by Lévy noise.
    MSC: 92D25, 34K20
  • 加载中
  • [1] J. Bao, X. Mao, G. Yin, et al., Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601–6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [2] A. Bhadra, E.L. Ionides, K. Laneri, et al., Malaria in Northwest India: data analysis via partially observed stochastic differential equation models driven by Lévy noise, J. Amer. Stat. Assoc., 2011, 106, 440–451. doi: 10.1198/jasa.2011.ap10323

    CrossRef Google Scholar

    [3] Y. Cai, Y. Kang, M. Banerjee, et al., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Diff. Equat., 2015, 259, 7463–7502. doi: 10.1016/j.jde.2015.08.024

    CrossRef Google Scholar

    [4] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 2011, 71, 876–902. doi: 10.1137/10081856X

    CrossRef Google Scholar

    [5] C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 2014, 38, 5067–5079. doi: 10.1016/j.apm.2014.03.037

    CrossRef Google Scholar

    [6] D. Jiang, N. Shi, Y. Zhao, Existence, uniqueness and global stability of positive solutions to the Food-Limited population model with random perturbation, Math. Comput. Model., 2005, 42, 651–658. doi: 10.1016/j.mcm.2004.03.011

    CrossRef Google Scholar

    [7] W. Kermack, A. McKendrick, Contributions to the mathematical theory of epidemics (Part Ⅰ), Proc. Soc. Lond. Ser. A, 1927, 115, 700–721. doi: 10.1098/rspa.1927.0118

    CrossRef Google Scholar

    [8] A. Lahrouz, L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statist. Probab. Lett., 2013, 83, 960–968. doi: 10.1016/j.spl.2012.12.021

    CrossRef Google Scholar

    [9] D. Li, J. Cui, M. Liu, et al., The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol., 2015, 77, 1705–1743. doi: 10.1007/s11538-015-0101-9

    CrossRef Google Scholar

    [10] D. Li, J. Cui, G. Song, Permanence and extinction for a single-species system with jump-diffusion, J. Math. Anal. Appl., 2015, 430, 438–464. doi: 10.1016/j.jmaa.2015.04.050

    CrossRef Google Scholar

    [11] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps. Nonl. Anal., 2013, 85, 204–213.

    Google Scholar

    [12] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 2002, 97, 95–110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [13] R.M. May, Stability and complexity in model ecosystems, Princeton Univ. Press, New Jersey, 1973.

    Google Scholar

    [14] T. Tang, Z. Teng, Z. Li, Threshold behavior in a class of stochastic SIRS epidemic models with nonlinear incidence, Stoch. Anal. Appl., 2015, 33, 994–1019. doi: 10.1080/07362994.2015.1065750

    CrossRef Google Scholar

    [15] E. Tornatore, S.M. Buccellato, P. Vetro, Stability of a stochastic SIR system, Phys. A., 2005, 354, 111–126. doi: 10.1016/j.physa.2005.02.057

    CrossRef Google Scholar

    [16] Y. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 2014, 34, 90–93. doi: 10.1016/j.aml.2013.11.002

    CrossRef Google Scholar

    [17] B. Zheng, X. Meng, T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 2019, 87, 80–86. doi: 10.1016/j.aml.2018.07.014

    CrossRef Google Scholar

    [18] J. Zhou, Y. Yang, T. Zhang, Global stability of a discrete multigroup SIR model with nonlinear incidence rate, Mathematical Methods in the Applied Sciences, 2017, 40, 5370–5379. doi: 10.1002/mma.v40.14

    CrossRef Google Scholar

    [19] J. Zhou, Y. Yang, T. Zhang, Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate, J. Math. Anal. Appl., 2018, 466, 835-859. doi: 10.1016/j.jmaa.2018.06.029

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2649) PDF downloads(781) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint