2019 Volume 9 Issue 2
Article Contents

Ozkan Guner. EXACT TRAVELLING WAVE SOLUTIONS TO THE SPACE-TIME FRACTIONAL CALOGERO-DEGASPERIS EQUATION USING DIFFERENT METHODS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 428-439. doi: 10.11948/2156-907X.20160254
Citation: Ozkan Guner. EXACT TRAVELLING WAVE SOLUTIONS TO THE SPACE-TIME FRACTIONAL CALOGERO-DEGASPERIS EQUATION USING DIFFERENT METHODS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 428-439. doi: 10.11948/2156-907X.20160254

EXACT TRAVELLING WAVE SOLUTIONS TO THE SPACE-TIME FRACTIONAL CALOGERO-DEGASPERIS EQUATION USING DIFFERENT METHODS

  • In this paper, we employed the ansatz method, the exp-function method and the $ \left( \frac{G^{\prime }}{G}\right) $-expansion method for the first time to obtain the exact and traveling wave solutions of the space time fractional Calogero Degasperis equation. As a result, we obtained some soliton and traveling wave solutions for this equation by means of proposed three analytical methods and the aid of commercial software Maple. The results show that these methods are effective and powerful mathematical tool for solving nonlinear FDEs arising in mathematical physics.
    MSC: 35Q51, 35R11, 83C15
  • 加载中
  • [1] E. Aksoy, M. Kaplan and A. Bekir, Exponential rational functionmethod for space–time fractional differential equations, Waves in Random and Complex Media, 2016, 26(2), 142–151.

    Google Scholar

    [2] I. Aslan, On the application of the Exp-function method to the KP equation for N-soliton solutions, Applied Mathematics and Computation, 2012, 219, 2825–2828. doi: 10.1016/j.amc.2012.09.046

    CrossRef Google Scholar

    [3] A. Bekir, E. Aksoy and A. C. Cevikel, Exact solutions of nonlinear time fractional partial differential equations by sub-equation method, Mathematical Methods in the Applied Sciences, 2015, 38(13), 2779–2784. doi: 10.1002/mma.v38.13

    CrossRef Google Scholar

    [4] A. Bekir, O. Guner and O. Unsal, The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations, Journal of Computational and Nonlinear Dynamics, 2015, 10(021020), 463–470.

    Google Scholar

    [5] A. Bekir and O. Guner, Exact solutions of nonlinear fractional differential equations by $(G^{\prime }/G)$-expansion method, Chin. Phys. B, 2013, 22(11), 110202. doi: 10.1088/1674-1056/22/11/110202

    CrossRef $(G^{\prime }/G)$-expansion method" target="_blank">Google Scholar

    [6] A. Bekir, O. Guner, O. Unsal and M. Mirzazadeh, Applications of fractional complex transform and $(G^{\prime }/G)$-expansion method for time-fractional differential equations, Journal of Applied Analysis and Computation, 2016, 6(1), 131–144.

    $(G^{\prime }/G)$-expansion method for time-fractional differential equations" target="_blank">Google Scholar

    [7] A. Bekir, O. Guner and E. Aksoy, Periodic and hyperbolic solutions of nonlinear fractional differential equations, Appl. Comput. Math., 2016, 15(1), 88–95.

    Google Scholar

    [8] A. Bekir, O. Guner, A. H. Bhrawy and A. Biswas, Solving nonlinear fractional differential equations using exp-function and $ (G^{\prime }/G)$-expansion methods, Rom. Journ. Phys., 2015, 60(3–4), 360–378.

    $ (G^{\prime }/G)$-expansion methods" target="_blank">Google Scholar

    [9] A. Bekir and O. Guner, Bright and dark soliton solutions for some nonlinear fractional differential equations, Chin. Phys. B, 2016, 25(3), 030203. doi: 10.1088/1674-1056/25/3/030203

    CrossRef Google Scholar

    [10] H. Bulut, H. M. Baskonus and Y. Pandir, The Modified Trial Equation Method for Fractional Wave Equation and Time Fractional Generalized Burgers Equation, Abstract and Applied Analysis, 2013, 2013, 636802.

    Google Scholar

    [11] A. Biswas, H. Triki and M. Labidi, Bright and Dark Solitons of the Rosenau-Kawahara Equation with Power Law Nonlinearity, Physics of Wave Phenomena, 2011, 19(1), 24–29. doi: 10.3103/S1541308X11010067

    CrossRef Google Scholar

    [12] A. Bekir and O. Guner, Bright and dark soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation and generalized Benjamin equation, Pramana-J. Phys., 2013, 81(2), 203–214. doi: 10.1007/s12043-013-0568-6

    CrossRef Google Scholar

    [13] A. Bekir and A. Boz, Application of He's exp-function method for nonlinear evolution equations, Computers and Mathematics with Applications, 2009, 58, 2286–2293. doi: 10.1016/j.camwa.2009.03.019

    CrossRef Google Scholar

    [14] A. Bekir, Application of the $(G^{\prime }/G)$-expansion method for nonlinear evolution equations, Physics Letters A, 2008, 372, 3400–3406. doi: 10.1016/j.physleta.2008.01.057

    CrossRef $(G^{\prime }/G)$-expansion method for nonlinear evolution equations" target="_blank">Google Scholar

    [15] J. Choi, H. Kim and R. Sakthivel, Exact travelling wave solutions of reaction-diffusion models of fractional order, Journal of Applied Analysis and Computation, 2017, 7(1), 236–248.

    Google Scholar

    [16] M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ, Geophys. J. Royal Astronom. Soc, 1967, 13, 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x

    CrossRef Google Scholar

    [17] V. Daftardar-Gejji and S. Bhalekar, Solving multi-term linear and non-linear diffusion wave equations of fractional order by adomian decomposition method, Appl. Math. Comput., 2008, 202, 113–120.

    Google Scholar

    [18] A. A. Elbeleze, A. Kılıçman and B. M. Taib, Fractional Variational Iteration Method and Its Application to Fractional Partial Differential Equation, Mathematical Problems in Engineering, 2013, 2013, 543848.

    Google Scholar

    [19] M. Eslami, B. F. Vajargah, M. Mirzazadeh and A. Biswas, Application of first integral method to fractional partial differential equations, Indian J Phys, 2014, 88(2), 177–184. doi: 10.1007/s12648-013-0401-6

    CrossRef Google Scholar

    [20] S. M. Ege and E. Mısırlı, The modified Kudryashov method for solving some fractional-order nonlinear equations, Advances in Difference Equations, 2014, 2014, 135. doi: 10.1186/1687-1847-2014-135

    CrossRef Google Scholar

    [21] K. A. Gepreel, T. A. Nofal and A. A. Al-Thobaiti, Numerical solutions for the nonlinear partial fractional Zakharov-Kuznetsov equations with time and space fractional, Scientific Research and Essays, 2014, 9, 471–482. doi: 10.5897/SRE

    CrossRef Google Scholar

    [22] K. A. Gepreel, T. A. Nofal and A. A. Alasmari, Exact solutions for nonlinear integro-partial differential equations using the generalized Kudryashov method, Journal of the Egyptian Mathematical Society, 2017, 25 (4), 438–444. doi: 10.1016/j.joems.2017.09.001

    CrossRef Google Scholar

    [23] K. A. Gepreel, T. A. Nofal and N. S. Al-Sayali, Optical Soliton Solutions for Nonlinear Evolution Equations in Mathematical Physics by Using the Extended (G'/G) Expansion Function Method, Journal of Computational and Theoretical Nanoscience, 2017, 14(2), 979–990.

    Google Scholar

    [24] K. A. Gepreel, The homotopy perturbation method to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations, Applied Math. Letters, 2011, 24, 1428–1434. doi: 10.1016/j.aml.2011.03.025

    CrossRef Google Scholar

    [25] K. A. Gepreel, Exact solutions for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations using the modified (w/g)-expansion method, Computers and Mathematics with Applications, 2016, 72(9), 2072–2083. doi: 10.1016/j.camwa.2016.08.005

    CrossRef Google Scholar

    [26] K. A. Gepreel and A. A. Al-Thobaiti, Exact solution of nonlinear partial fractional differential equations using the fractional sub-equation method, Indian Journal of Phys., 2014, 88(3), 293–300. doi: 10.1007/s12648-013-0407-0

    CrossRef Google Scholar

    [27] K. A. Gepreel and S. Omran, Exact solutions for nonlinear partial fractional differential equations, Chin. Phys. B, 2012, 21, 110204. doi: 10.1088/1674-1056/21/11/110204

    CrossRef Google Scholar

    [28] O. Guner and D. Eser, Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods, Advances in Mathematical Physics, 2014, 2014, 456804.

    Google Scholar

    [29] K. A. Gepreel, T. A. Nofal and N. S. Al-Sayali, Exact solutions to the generalized Hirota-Satsuma KdV equations using the extended trial equation method, Eng. Lett., 2016, 24(3) 274–283.

    Google Scholar

    [30] K. A. Gepreel, Extended trial equation method for nonlinear coupled Schrodinger Boussinesq partial differential equations, Journal of the Egyptian Mathematical Society, 2016, 24(3), 381–391. doi: 10.1016/j.joems.2015.08.007

    CrossRef Google Scholar

    [31] O. Guner, Singular and non-topological soliton solutions for nonlinear fractional differential equations, Chin. Phys. B, 2015, 24(10), 100201. doi: 10.1088/1674-1056/24/10/100201

    CrossRef Google Scholar

    [32] J. H. He, S. K. Elegan and Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Physics Letters A, 2012, 376, 257–259. doi: 10.1016/j.physleta.2011.11.030

    CrossRef Google Scholar

    [33] J. H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fractals, 2007, 34(5), 1421–1429. doi: 10.1016/j.chaos.2006.05.072

    CrossRef Google Scholar

    [34] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 2006, 30, 700–708. doi: 10.1016/j.chaos.2006.03.020

    CrossRef Google Scholar

    [35] M. Javidi and B. Ahmad, Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients, Journal of Applied Analysis and Computation, 2015, 5(1), 52–63.

    Google Scholar

    [36] H. Jafari, H. Tajadodi, D. Baleanu, A. A. Al-Zahrani, Y. A. Alhamed and A. H. Zahid, Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation, Central European Journal of Physics, 2013, 11(10), 1119–1124.

    Google Scholar

    [37] G. Jumarie, Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 2006, 51, 1367–1376. doi: 10.1016/j.camwa.2006.02.001

    CrossRef Google Scholar

    [38] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions, Appl. Maths. Lett., 2009, 22, 378–385.

    Google Scholar

    [39] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [40] K. Khan and M. A. Akbar, Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method, Ain Shams Engineering Journal, 2013, 4(4), 903–909. doi: 10.1016/j.asej.2013.01.010

    CrossRef Google Scholar

    [41] K. Khan and M. A. Akbar, Exact solutions of the (2+1)-dimensional cubic Klein–Gordon equation and the (3+1)-dimensional Zakharov–Kuznetsov equation using the modified simple equation method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2014, 15, 74–81.

    Google Scholar

    [42] W. Liu and K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana-J. Phys., 2013, 81(3), 377–384. doi: 10.1007/s12043-013-0583-7

    CrossRef Google Scholar

    [43] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    Google Scholar

    [44] M. S. Mohamed and K. A. Gepreel, Reduced differential transform method for nonlinear integral member of Kadomtsev–Petviashvili hierarchy differential equations, Journal of the Egyptian Mathematical Society, 2017, 25(1), 1–7.

    Google Scholar

    [45] S. T. Mohyud-Din, T. Nawaz, E. Azhar and M. A. Akbar, Fractional sub-equation method to space–timefractional Calogero-Degasperis and potential Kadomtsev-Petviashvili equations, Journal of Taibah University for Science, 2017, 11(2), 258–263. doi: 10.1016/j.jtusci.2014.11.010

    CrossRef Google Scholar

    [46] I. Podlubny, Fractional Differential Equations, Academic Press, California, 1999.

    Google Scholar

    [47] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.

    Google Scholar

    [48] S. Sahoo and S. S. Ray, Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations, Computers and Mathematics with Applications, 2015, 70, 158–166. doi: 10.1016/j.camwa.2015.05.002

    CrossRef Google Scholar

    [49] N. Shang and B. Zheng, Exact Solutions for Three Fractional Partial Differential Equations by the $(G^{\prime }/G)$ Method, International Journal of Applied Mathematics, 2013, 43, 3–10.

    $(G^{\prime }/G)$ Method" target="_blank">Google Scholar

    [50] N. Taghizadeh, M. Mirzazadeh, M. Rahimian and M. Akbari, Application of the simplest equation method to some time-fractional partial differential equations, Ain Shams Engineering Journal, 2013, 4(4), 897–902. doi: 10.1016/j.asej.2013.01.006

    CrossRef Google Scholar

    [51] H. Triki and A. M. Wazwaz, Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients, Phys. Lett. A, 2009, 373, 2162–2165. doi: 10.1016/j.physleta.2009.04.029

    CrossRef Google Scholar

    [52] G. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Physics Letters A, 2010, 374, 2506–2509. doi: 10.1016/j.physleta.2010.04.034

    CrossRef Google Scholar

    [53] M. Wang, X. Li and J. Zhang, The $(G^{\prime }/G)$-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 2008, 372, 417–423. doi: 10.1016/j.physleta.2007.07.051

    CrossRef $(G^{\prime }/G)$-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics" target="_blank">Google Scholar

    [54] L. G. Yuan and Z. Alam, An optimal homotopy analysis method based on particle swarm optimization: application to fractional-order differential equation, Journal of Applied Analysis and Computation, 2016, 6 (1), 103–118.

    Google Scholar

    [55] X. J. Yang, D. Baleanu, Y. Khan and S. T. Mohyud-din, Local fractional variational iteration method for Diffusion and wave equations on cantor sets, Rom. J. Phys., 2014, 59, 36–48.

    Google Scholar

    [56] S. Zhang and H. Q. Zhang, An Exp-function method for new N-soliton solutions with arbitrary functions of a (2 +1)-dimensional vcBK system, Computers and Mathematics with Applications, 2011, 61, 1923–1930.

    Google Scholar

Article Metrics

Article views(3112) PDF downloads(839) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint