2019 Volume 9 Issue 4
Article Contents

Lijuan Shi, Zhenshu Wen. SEVERAL TYPES OF PERIODIC WAVE SOLUTIONS AND THEIR RELATIONS OF A FUJIMOTO-WATANABE EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1193-1203. doi: 10.11948/2156-907X.20180084
Citation: Lijuan Shi, Zhenshu Wen. SEVERAL TYPES OF PERIODIC WAVE SOLUTIONS AND THEIR RELATIONS OF A FUJIMOTO-WATANABE EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1193-1203. doi: 10.11948/2156-907X.20180084

SEVERAL TYPES OF PERIODIC WAVE SOLUTIONS AND THEIR RELATIONS OF A FUJIMOTO-WATANABE EQUATION

  • Corresponding author: Email address:wenzhenshu@hqu.edu.cn(Z. Wen)
  • Fund Project: This work is partially supported by the National Natural Science Foundation of China under Grant No. 11701191, Program for Innovative Research Team in Science and Technology in Fujian Province University, Quanzhou High-Level Talents Support Plan under Grant 2017ZT012, and Subsidized Project for Cultivating Postgraduates' Innovative Ability in Scientific Research of Huaqiao University
  • In this paper, we study periodic wave solutions of a Fujimoto–Watanabe equation by exploiting the bifurcation method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space, and then give the sufficient conditions to guarantee the existence of several types of periodic wave solutions. What's more, we present their exact expressions and reveal their inside relations as well as their relations with solitary wave solutions.

    MSC: 34C60, 35Q51, 35C05, 35C07, 35C08
  • 加载中
  • [1] A. Biswas and M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(7), 1676-1683. doi: 10.1016/j.cnsns.2012.11.014

    CrossRef Google Scholar

    [2] A. Biswas, M. Song, H. Triki et al., Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion, Appl. Math. Inform. Sci., 2014, 8(3), 949-957. doi: 10.12785/amis/080303

    CrossRef Google Scholar

    [3] A. Chen, S. Wen, S. Tang et al., Effects of quadratic singular curves in integrable equations, Studies in Applied Mathematics, 2015, 134(1), 24-61. doi: 10.1111/sapm.12060

    CrossRef Google Scholar

    [4] Y. Chen, M. Song and Z. Liu, Soliton and Riemann theta function quasiperiodic wave solutions for a (2+1)-dimensional generalized shallow water wave equation, Nonlinear Dyn, 2015, 82(1-2), 333-347. doi: 10.1007/s11071-015-2161-7

    CrossRef Google Scholar

    [5] X. Du, An irrational trial equation method and its applications, Journal of Physics, 2010, 75(3), 415-422.

    Google Scholar

    [6] A. Fujimoto and Y. Watanabe, Polynomial evolution equations of not normal type admitting nontrivial symmetries, Physics Letters A, 1989, 136(6), 294-299. doi: 10.1016/0375-9601(89)90820-7

    CrossRef Google Scholar

    [7] T. D. Leta and J. Li, Various exact soliton solutions and bifurcations of a generalized Dullin-Gottwald-Holm Equation with a power law nonlinearity, International Journal of Bifurcation and Chaos, 2017, 27(8), 1750129. doi: 10.1142/S0218127417501292

    CrossRef Google Scholar

    [8] J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [9] J. Li and Z. Qiao, Bifurcations and exact traveling wave solutions of the generalized two-component Camassa-Holm equation, Int. J. Bifurcat. Chaos., 2012, 22(12), 1250305. doi: 10.1142/S0218127412503051

    CrossRef Google Scholar

    [10] C. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Computer Physics Communications, 2010, 181(2), 317-324. doi: 10.1016/j.cpc.2009.10.006

    CrossRef Google Scholar

    [11] Z. Liu and Y. Liang, The explicit nonlinear wave solutions and their bifurcations of the generalized Camassa-Holm equation, Int. J. Bifurcat. Chaos., 2011, 21(11), 3119-3136. doi: 10.1142/S0218127411030556

    CrossRef Google Scholar

    [12] C. Pan, L. Ling and Z. Liu, A new integrable equation with cuspons and periodic cuspons, Physica Scripta, 2014, 89(10), 105207. doi: 10.1088/0031-8949/89/10/105207

    CrossRef Google Scholar

    [13] S. Sakovich, Fujimoto-Watanabe equations and differential substitutions, Journal of Physics A: Mathematical and General, 1991, 24(10), L519-L521. doi: 10.1088/0305-4470/24/10/004

    CrossRef Google Scholar

    [14] S. Sergei, Smooth soliton solutions of a new integrable equation by Qiao, Journal of Mathematical Physics, 2011, 52(2), 023509. doi: 10.1063/1.3548837

    CrossRef Google Scholar

    [15] L. Shi and Z. Wen, Bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation, Commun. Theor. Phys., 2018, 69(6), 631-636. doi: 10.1088/0253-6102/69/6/631

    CrossRef Google Scholar

    [16] L. Shi and Z. Wen, Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation, Chinese Physics B, 2019, 28(4), 040201. doi: 10.1088/1674-1056/28/4/040201

    CrossRef Google Scholar

    [17] M. Song, Nonlinear wave solutions and their relations for the modified Benjamin-Bona-Mahony equation, Nonlinear Dyn, 2015, 80(1-2), 431-446. doi: 10.1007/s11071-014-1880-5

    CrossRef Google Scholar

    [18] Z. Wen, Bifurcation of solitons, peakons, and periodic cusp waves for θ- equation, Nonlinear Dyn, 2014, 77(1-2), 247-253. doi: 10.1007/s11071-014-1289-1

    CrossRef Google Scholar

    [19] Z. Wen, Several new types of bounded wave solutions for the generalized twocomponent Camassa-Holm equation, Nonlinear Dyn, 2014, 77(3), 849-857. doi: 10.1007/s11071-014-1346-9

    CrossRef Google Scholar

    [20] Z. Wen, Bifurcations and nonlinear wave solutions for the generalized twocomponent integrable Dullin-Gottwald-Holm system, Nonlinear Dyn, 2015, 82(1-2), 767-781. doi: 10.1007/s11071-015-2195-x

    CrossRef Google Scholar

    [21] Z. Wen, Extension on peakons and periodic cusp waves for the generalization of the Camassa-Holm equation, Math Meth Appl Sci, 2015, 38(11), 2363-2375. doi: 10.1002/mma.v38.11

    CrossRef Google Scholar

    [22] Z. Wen, Bifurcations and exact traveling wave solutions of a new twocomponent system, Nonlinear Dynamics, 2017, 87(3), 1917-1922. doi: 10.1007/s11071-016-3162-x

    CrossRef Google Scholar

    [23] Z. Wen, Bifurcations and exact traveling wave solutions of the celebrated GreenNaghdi equations, International Journal of Bifurcation and Chaos, 2017, 27(07), 1750114. doi: 10.1142/S0218127417501140

    CrossRef Google Scholar

    [24] Z. Wen and Z. Liu, Bifurcation of peakons and periodic cusp waves for the generalization of the Camassa-Holm equation, Nonlinear Anal., 2011, 12(3), 1698-1707. doi: 10.1016/j.nonrwa.2010.11.002

    CrossRef Google Scholar

    [25] Z. Wen, Z. Liu and M. Song, New exact solutions for the classical Drinfel'dSokolov-Wilson equation, Appl. Math. Comput., 2009, 215(6), 2349-2358.

    Google Scholar

    [26] Z. Wen and L. Shi, Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation, Chinese Physics B, 2018, 27(9), 090201. doi: 10.1088/1674-1056/27/9/090201

    CrossRef Google Scholar

    [27] Z. Wen and L. Shi, Dynamics of bounded traveling wave solutions for the modified Novikov equation, Dynam. Syst. Appl., 2018, 27(3), 581-591.

    Google Scholar

    [28] L. Zhang, L. Chen and X. Huo, The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation, Nonlinear Dyn, 2013, 72(4), 789-801. doi: 10.1007/s11071-013-0753-7

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(3006) PDF downloads(1050) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint