2019 Volume 9 Issue 4
Article Contents

Guotao Wang, Zhanbing Bai, Lihong Zhang. SUCCESSIVE ITERATIONS FOR UNIQUE POSITIVE SOLUTION OF A NONLINEAR FRACTIONAL Q-INTEGRAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1204-1215. doi: 10.11948/2156-907X.20180193
Citation: Guotao Wang, Zhanbing Bai, Lihong Zhang. SUCCESSIVE ITERATIONS FOR UNIQUE POSITIVE SOLUTION OF A NONLINEAR FRACTIONAL Q-INTEGRAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1204-1215. doi: 10.11948/2156-907X.20180193

SUCCESSIVE ITERATIONS FOR UNIQUE POSITIVE SOLUTION OF A NONLINEAR FRACTIONAL Q-INTEGRAL BOUNDARY VALUE PROBLEM

  • Corresponding author: Email address:zhanglih149@126.com(L. Zhang)
  • Fund Project: Partially supported by National Natural Science Foundation of China(Nos. 11501342 and 11571207), the Natural Science Foundation for Young Scientists of Shanxi Province, China(No. 201701D221007) and STIP(Nos. 201802068 and 201802069)
  • In this paper, under certain nonlinear growth conditions, we investigate the existence and successive iterations for the unique positive solution of a nonlinear fractional $ q $-integral boundary problem by employing hybrid monotone method, which is a novel approach to nonlinear fractional $ q $-difference equation. This paper not only proves the existence of the unique positive solution, but also gives some computable explicit hybrid iterative sequences approximating to the unique positive solution.
    MSC: 34A08, 34B10, 34B18, 39A10
  • 加载中
  • [1] T. Abdeljawad and D. Baleanu, Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16, 4682-4688. doi: 10.1016/j.cnsns.2011.01.026

    CrossRef Google Scholar

    [2] R. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc., 1969, 66, 365-370. doi: 10.1017/S0305004100045060

    CrossRef Google Scholar

    [3] B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 2014, 351, 2890- 2909. doi: 10.1016/j.jfranklin.2014.01.020

    CrossRef Google Scholar

    [4] B. Ahmad, S. Ntouyas and J. Tariboon, Quantum Calculus:New Concepts, Impulsive IVPs and BVPs, Inequalities, World Scientific, 2016.

    Google Scholar

    [5] R. Almeida and N. Martins, Existence results for fractional q-difference equations of order α∈]2,3[ with three-point boundary conditions, Comm. Nonl. Sci. Nume. Simu., 2014, 19, 1675-1685. doi: 10.1016/j.cnsns.2013.10.018

    CrossRef Google Scholar

    [6] W. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 1966/1967, 15(2), 135-140. doi: 10.1017/S0013091500011469

    CrossRef Google Scholar

    [7] G. A. Anastassiou, q-Fractional Inequalities, Cubo, 2011, 13, 61-71. doi: 10.4067/S0719-06462011000100005

    CrossRef Google Scholar

    [8] M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Math., Springer-Verlag, Berlin, 2012.

    Google Scholar

    [9] F. M. Atici and P. W. Eloe, Fractional q-Calculus on a time scale, J. Nonlinear Math. Phys., 2007, 14, 341-352. doi: 10.2991/jnmp.2007.14.3.4

    CrossRef Google Scholar

    [10] Z. Bai, S. Zhang, S. Sun and C. Yin, Monotone iterative method for a class of fractional differential equations, Electron. J. Differential Equations., 2016, 2016(06), 1-8.

    Google Scholar

    [11] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48-54. doi: 10.1016/j.aml.2015.07.002

    CrossRef Google Scholar

    [12] R. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 2011, 61, 367-373. doi: 10.1016/j.camwa.2010.11.012

    CrossRef Google Scholar

    [13] R. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron J. Qual. Theory. Differ. Equat., 2010, 70, 1-10.

    Google Scholar

    [14] J. R. Graef and L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 2012, 218, 9682-9689.

    Google Scholar

    [15] J. R. Graef and L. Kong, Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives, Fract. Calc. Appl. Anal., 2013, 16, 695-708.

    Google Scholar

    [16] D. Guo, Fixed points of mixed monotone operators with application, Appl. Anal., 1988, 34, 215-224.

    Google Scholar

    [17] F. Jarad, T. Abdeljawad and D. Baleanu, Stability of q-fractional nonautonomous systems, Nonlinear Anal. Real World Appl., 2013, 14, 780-784. doi: 10.1016/j.nonrwa.2012.08.001

    CrossRef Google Scholar

    [18] M. Jiang and S. Zhong, Existence of solutions for nonlinear fractional qdifference equations with Riemann-Liouville type q-derivatives, J. Appl. Math. Comput., 2015, 47, 429-459. doi: 10.1007/s12190-014-0784-3

    CrossRef Google Scholar

    [19] R. Jing and C. Zhai, A fractional q-difference equation with integral boundary conditions and comparison theorem, Int. J. Nonlin. Sci. Num. Simul., 2017, 18, 575-583.

    Google Scholar

    [20] N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional q-differences, J. Nonl. Conv. Anal., 2015, 16, 375-384.

    Google Scholar

    [21] X. Li, Z. Han and X. Li, Boundary value problems of fractional q-difference Schröinger equations, Appl. Math. Lett., 2015, 46, 100-105. doi: 10.1016/j.aml.2015.02.013

    CrossRef Google Scholar

    [22] J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, Electron. J. Qual. Theory Differ. Equat., 2011, 92, 1-10.

    Google Scholar

    [23] F. H. Miao and S. H. Liang, Uniqueness of positive solutions for fractional q-difference boundary-value problems with p-laplacian operator, Electron J. Differ. Equat., 2013, 174, 1-11. doi: 10.1006/jdeq.2000.3947

    CrossRef Google Scholar

    [24] K. Pei, G. Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 2017, 312, 158-168.

    Google Scholar

    [25] S. Purohit and R. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 2013, 55, 62-74.

    Google Scholar

    [26] P. M. Rajkovic, S. D. Marinkovic and M. S. Stankovic, On q-analogues of Caputo derivative and MittagCLeffler function, Fract. Calc. Appl. Anal., 2007, 10, 359-373.

    Google Scholar

    [27] Q. Song and Z. Bai, Positive solutions of fractional differential equations involving the RiemannCStieltjes integral boundary condition, Adv. Difference Equ., 2018, 183, 1-7.

    Google Scholar

    [28] G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 2015, 47, 1-7. doi: 10.1016/j.aml.2015.03.003

    CrossRef Google Scholar

    [29] G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl. Math. Lett., 2018, 76, 103-109. doi: 10.1016/j.aml.2017.08.008

    CrossRef Google Scholar

    [30] G. Wang, K. Pei, R. Agarwal et.al, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 2018, 343, 230-239. doi: 10.1016/j.cam.2018.04.062

    CrossRef Google Scholar

    [31] G. Wang, K. Pei and D. Baleanu, Explicit iteration to Hadamard fractional integro-differential equations on infinite domain, Adv. Difference Equ., 2016, 299, 1-11.

    Google Scholar

    [32] G. Wang, W. Sudsutad, L. Zhang and J. Tariboon, Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type, Adv. Differ. Equat., 2016, 211, 1-11.

    Google Scholar

    [33] Y. Wei, Q. Song and Z. Bai, Existence and iterative method for some fourth order nonlinear boundary value problems, Appl. Math. Lett., 2019, 87, 101-107. doi: 10.1016/j.aml.2018.07.032

    CrossRef Google Scholar

    [34] W. Yang, Positive solutions for nonlinear semipositone fractional q-difference system with coupled integral boundary conditions, Appl. Math. Comput., 2014, 244, 702-725.

    Google Scholar

    [35] C. Zhai and R. Jing, The unique solution for a fractional q-difference equation with three-point boundary conditions, Indagationes Mathematicae, 2018, 29, 948-961. doi: 10.1016/j.indag.2018.02.002

    CrossRef Google Scholar

    [36] L. Zhang, B. Ahmad and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 2015, 91(01), 116-128. doi: 10.1017/S0004972714000550

    CrossRef Google Scholar

    [37] L. Zhang, B. Ahmad and G. Wang, Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary value problems on an unbounded domain, Appl. Comput. Math., 2016, 15(2), 149-158.

    Google Scholar

    [38] W. Zhang, Z. Bai and S. Sun. Extremal solutions for some periodic fractional differential equations, Adv. Difference Equ., 2016, 179, 1-8.

    Google Scholar

    [39] X. Zhang, L. Liu and Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Lett., 2014, 37, 26-33. doi: 10.1016/j.aml.2014.05.002

    CrossRef Google Scholar

    [40] X. Zhang, L. Liu, Y. Wu and Y. Lu, The iterative solutions of nonlinear fractional differential equations, Appl. Math. Comput., 2013, 219(9), 4680-4691.

    Google Scholar

    [41] Y. Zhao, H. Chen and Q. Zhang, Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivative, Bound. Value Probl., 2013, 103, 1-16.

    Google Scholar

Article Metrics

Article views(3101) PDF downloads(777) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint