Citation: | Shugui Kang, Huiqin Chen, Luping Li, Yaqiong Cui, Shiwang Ma. EXISTENCE OF THREE POSITIVE SOLUTIONS FOR A CLASS OF RIEMANN-LIOUVILLE FRACTIONAL Q-DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 590-600. doi: 10.11948/2156-907X.20180118 |
[1] |
R. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Camb. Philos. Soc., 1996, 66, 365-370.
$q$-integrals and |
[2] |
W. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 1966/1967, 15(2), 135-140. doi: 10.1017/S0013091500011469
CrossRef $q$-integrals and |
[3] | A. Alsaedi, B. Ahmad and H. Al-Hutami, A study of nonlinear fractional $q$-difference equations with nonlocal integral boundary conditions, Abstr. Appl. Anal., 2013, Art. ID 410505. |
[4] | R. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 2011, 61, 367-373. doi: 10.1016/j.camwa.2010.11.012 |
[5] | D. J. Guo, Nonlinear Functional Analysis, second ed., Shandong Sci. Tec. Press, Jinan, 2001. |
[6] |
F. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinb., 1908, 46, 253-281.
$q$-functions and a certain difference operator" target="_blank">Google Scholar |
[7] | F. Jackson, On $q$-definite integrals, Q. J. Pure Appl. Math., 1910, 41, 193-203. |
[8] | Ilknur Koca, Amethod for solving differential equations of $q$-fractional order, Appl. Math. Comput., 2015, 266, 1-5. |
[9] |
Y. F. Li and W. G. Yang, Monotone iterative method for nonlinear fractional $q$-difference equations with integral boundary conditions, Adv. Differ. Equ., 2015, 2015, 294. doi: 10.1186/s13662-015-0630-4
CrossRef $q$-difference equations with integral boundary conditions" target="_blank">Google Scholar |
[10] |
X. H. Li, Z. L. Han and S. R. Sun, Existence of positive solutions of nonlinear fractional $q$-difference equation with parameter, Adv. Differ. Equ., 2013, 2013, 260. doi: 10.1186/1687-1847-2013-260
CrossRef $q$-difference equation with parameter" target="_blank">Google Scholar |
[11] |
X. H. Li, Z. L. Han, S. R. Sun and L. Y. Sun, Eigenvalue problems of fractional $q$-difference equations with generalized $p$-Laplacian, Appl. Math. Lett., 2016, 57, 46-53. doi: 10.1016/j.aml.2016.01.003
CrossRef $q$-difference equations with generalized |
[12] | J. Ren and C. B. Zhai, A fractional q-difference equation with integral boundary conditions and comparison theorem, Int. J. Nonlinear Sci. Numerical. Simul., 2017, 18(7-8), 575-583. |
[13] |
G. T. Wang, W. Sudsutad, L. Zhang and J. Tariboon, Monotone iterative technique for a nonlinear fractional $q$-difference equation of Caputo type, Adv. Differ. Equ., 2016, 2016, 211. doi: 10.1186/s13662-016-0938-8
CrossRef $q$-difference equation of Caputo type" target="_blank">Google Scholar |
[14] |
W. G. Yang, Positive solutions for nonlinear semipositone fractional $q$-difference system with coupled integral boundary conditions, Appl. Math. Comput., 2014, 244, 702-725.
$q$-difference system with coupled integral boundary conditions" target="_blank">Google Scholar |
[15] |
C. B. Zhai and J. Ren, Positive and negative solutions of a boundary value problem for a fractional $q$-difference equation, Adv. Differ. Equ., 2017, 2017, 82. doi: 10.1186/s13662-017-1138-x
CrossRef $q$-difference equation" target="_blank">Google Scholar |
[16] | C. B. Zhai and J. Ren, The unique solution for a fractional q-difference equation with three-point boundary conditions, Indag. Math., 2018, 29(3), 948-961. doi: 10.1016/j.indag.2018.02.002 |
[17] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron J. Differ. Equat., 2016, 36, 1-12. |
[18] |
Y. L. Zhao, H. B. Chen and Q. M. Zhang, Existence results for fractional $q$-difference equations with nonlocal $q$-integral boundary conditions, Adv. Differ. Equ., 2013, 2013, 48. doi: 10.1186/1687-1847-2013-48
CrossRef $q$-difference equations with nonlocal |
[19] | Y. G. Zhao, S. R. Sun, Z. L. Han and Q. P. Li, The existence of multiple postive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, 2086-2097. doi: 10.1016/j.cnsns.2010.08.017 |
[20] |
W. X. Zhou and H. Z. Liu, Existence solutions for boundary value problem of nonlinear fractional $q$-difference equations, Adv. Differ. Equ., 2013, 2013, 113. doi: 10.1186/1687-1847-2013-113
CrossRef $q$-difference equations" target="_blank">Google Scholar |