[1]
|
C. O. Alves, D. Cassani, Daniele, C. Tarsi and M. B. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}^2$, J. Differential Equations, 2016, 261(3), 1933-1972. doi: 10.1016/j.jde.2016.04.021
CrossRef $\mathbb{R}^2$" target="_blank">Google Scholar
|
[2]
|
A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 2008, 76, 257-274. doi: 10.1007/s00032-008-0094-z
CrossRef Google Scholar
|
[3]
|
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson equation, Commun. Contemp. Math., 2008, 10, 391-404. doi: 10.1142/S021919970800282X
CrossRef Google Scholar
|
[4]
|
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345, 90-108. doi: 10.1016/j.jmaa.2008.03.057
CrossRef Google Scholar
|
[5]
|
L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Applied Mathematics Letters, 2017, 73, 44-48. doi: 10.1016/j.aml.2017.02.019
CrossRef Google Scholar
|
[6]
|
T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on $\mathbb{R}^N$, Comm. Partial Differ. Equa., 1995, 20, 1725-1741. doi: 10.1080/03605309508821149
CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar
|
[7]
|
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11, 283-293. doi: 10.12775/TMNA.1998.019
CrossRef Google Scholar
|
[8]
|
R. Benguria, H. Bris and E. Lieb, The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 1981, 79, 167-180. doi: 10.1007/BF01942059
CrossRef Google Scholar
|
[9]
|
G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248, 521-543. doi: 10.1016/j.jde.2009.06.017
CrossRef Google Scholar
|
[10]
|
G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(2-3), 417-423.
Google Scholar
|
[11]
|
G. M. Coclite, A multiplicity result for the Schrödinger-Maxwell equations with negative potential, Ann. Polon. Math., 2002, 79(1), 21-30. doi: 10.4064/ap79-1-2
CrossRef Google Scholar
|
[12]
|
S. J. Chen and C. L. Tang, Multiple solutions for a non-homogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on $\mathbb{R}^3$, Nonlinear Differ. Equa. Appl., 2010, 17, 559-574. doi: 10.1007/s00030-010-0068-z
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[13]
|
T. DAprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307-322.
Google Scholar
|
[14]
|
T. DAprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134, 893-906. doi: 10.1017/S030821050000353X
CrossRef Google Scholar
|
[15]
|
L. Ding, L. Li and J. L. Zhang, Mulltiple solutions for nonhomogeneous Schrödinger-Poisson system with asymptotical nonlinearity in $\mathbb{R}^3$, Taiwanese Journal of Mathematics, 2013, 17(5), 1627-1650. doi: 10.11650/tjm.17.2013.2798
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[16]
|
M. Du and F. B. Zhang, Existence of positive solutions for a nonhomogeneous Schrödinger-Poisson system in $\mathbb{R}^3$, International Journal of Nonlinear Science, 2013, 16(2), 185-192.
$\mathbb{R}^3$" target="_blank">Google Scholar
|
[17]
|
L. R. Huang, E. M. Rocha and J. Q. Chen, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differential Equations, 2013, 255, 2463-2483. doi: 10.1016/j.jde.2013.06.022
CrossRef Google Scholar
|
[18]
|
L. R. Huang and E. M. Rocha, A positive solution of a Schrödinger-Poisson system with critical exponent, Commun. Math. Anal., 2013, 15, 29-43.
Google Scholar
|
[19]
|
L. R. Huang, E. M. Rocha and J. Q. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 408, 55-69. doi: 10.1016/j.jmaa.2013.05.071
CrossRef Google Scholar
|
[20]
|
Y. S. Jiang, Z. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 2013, 83, 50-57. doi: 10.1016/j.na.2013.01.006
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[21]
|
H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 2007, 67(5), 1445-1456. doi: 10.1016/j.na.2006.07.029
CrossRef Google Scholar
|
[22]
|
E. H. Lieb, Thomas-Fermi and related theories and molecules, Rev. Modern Phys., 1981, 53, 603-641. doi: 10.1103/RevModPhys.53.603
CrossRef Google Scholar
|
[23]
|
P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 1984, 109, 33-97.
Google Scholar
|
[24]
|
P. Markowich, C. Ringhofer and C. Schmeiser, Semi conductor Equations, Springer-Verlag, NewYork, 1990.
Google Scholar
|
[25]
|
J. Mawhin and M.Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
Google Scholar
|
[26]
|
C. Mercuri, Positive solutions of nonlinear Schrödinger-Poisson systems with radial potentials vanishing at infinity, (English summary), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2008, 19(3), 211-227.
Google Scholar
|
[27]
|
J. J. Nieto and D. ORegan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 2009, 10, 680-690. doi: 10.1016/j.nonrwa.2007.10.022
CrossRef Google Scholar
|
[28]
|
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655-674. doi: 10.1016/j.jfa.2006.04.005
CrossRef Google Scholar
|
[29]
|
A. Salvatore, Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear Stud., 2006, 6(2), 157-169.
$\mathbb{R}^3$" target="_blank">Google Scholar
|
[30]
|
J. Seok, On nonlinear Schrödinger-Poisson equations with general potentials, J. Math. Anal. Appl., 2013, 401, 672-681. doi: 10.1016/j.jmaa.2012.12.054
CrossRef Google Scholar
|
[31]
|
Z. P. Shen and Z. Q. Han, Multiple solutions for a class of Schrödinger-Poisson systems with indefinite nonlinearity, J. Math. Anal. Appl., 2015, 426, 839-854. doi: 10.1016/j.jmaa.2015.01.071
CrossRef Google Scholar
|
[32]
|
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 1977, 55, 149-162. doi: 10.1007/BF01626517
CrossRef Google Scholar
|
[33]
|
M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian systems, third edition, Springer, Berlin, 2000.
Google Scholar
|
[34]
|
J. T. Sun, H. B. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2012, 252, 3365-3380. doi: 10.1016/j.jde.2011.12.007
CrossRef Google Scholar
|
[35]
|
J. T. Sun and T. F. Wu, On the nonlinear Schrödinger-Poisson system with sign-changing potential, Z. Angew. Math. Phys., 2015, 66, 1649-1669. doi: 10.1007/s00033-015-0494-1
CrossRef Google Scholar
|
[36]
|
M. Z. Sun, J. B. Su and L. G. Zhao, Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities, Discrete Contin. Dyn. Syst., 2015, 35, 427-440.
Google Scholar
|
[37]
|
M. Z. Sun, J. B. Su and L. G. Zhao, Solutions of a Schrödinger-Poisson system with combined nonlinearities, J. Math. Anal. Appl., 2016, 442, 385-403. doi: 10.1016/j.jmaa.2016.04.053
CrossRef Google Scholar
|
[38]
|
Z. P. Wang and H. S. Zhou, Positive solutions for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^3$, Dis. Contin. Dyn. Syst., 2007, 18, 809-816. doi: 10.3934/dcdsa
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[39]
|
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $\mathbb{R}^3$, Calc. Var., 2013, 48, 243-273. doi: 10.1007/s00526-012-0548-6
CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar
|
[40]
|
L. X. Wang and S. J. Chen, Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential, Electronic Journal of Differential Equations, 2018, 124, 1-21.
Google Scholar
|
[41]
|
L. X. Wang, S. W. Ma and N. Xu, Multiple solutions for nonhomogeneous Schrodinger-Poisson equations with sign-changing potential, Acta Mathematica Scientia, 2017, 37B(2), 555-572.
Google Scholar
|
[42]
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
Google Scholar
|
[43]
|
T. F. Wu, Four positive solutions for a semilinear elliptic equation involving concave and convex nonlinearities, Nonlinear Anal., 2009, 70, 1377-1392. doi: 10.1016/j.na.2008.02.017
CrossRef Google Scholar
|
[44]
|
T. F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions, Nonlinear Anal., 2008, 68, 1733-1745. doi: 10.1016/j.na.2007.01.004
CrossRef Google Scholar
|
[45]
|
M. B. Yang and B. R. Li, Solitary waves for non-homogeneous Schrödinger-Maxwell system, Appl. Math. Comput., 2009, 215, 66-70.
Google Scholar
|
[46]
|
Y. W. Ye and C. L. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var., 2015, 53, 383-411. doi: 10.1007/s00526-014-0753-6
CrossRef Google Scholar
|
[47]
|
L. G. Zhao and F. K. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 2009, 70, 2150-2164. doi: 10.1016/j.na.2008.02.116
CrossRef Google Scholar
|
[48]
|
L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 2008, 346(1), 155-169. doi: 10.1016/j.jmaa.2008.04.053
CrossRef Google Scholar
|
[49]
|
W. M. Zou and M. Schechter, Critical Point Theory and its Applications, Springer, New York, 2006.
Google Scholar
|
[50]
|
W. M. Zou, Varaint fountain theorem and their applications, Manuscripta Math., 2001, 104, 343-358. doi: 10.1007/s002290170032
CrossRef Google Scholar
|