[1]
|
P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlin Anal Real World Appl, 2012, 13, 1837-43. doi: 10.1016/j.nonrwa.2011.12.014
CrossRef Google Scholar
|
[2]
|
M. Baurmanna, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations , Journal of Theoretical Biology, 2007, 245, 220-229. doi: 10.1016/j.jtbi.2006.09.036
CrossRef Google Scholar
|
[3]
|
I. M. Bulai and E. Venturino, Shape effects on herd behavior in ecological interacting population models, Mathematics and Computers in Simulation, 2017, 141, 40-55. doi: 10.1016/j.matcom.2017.04.009
CrossRef Google Scholar
|
[4]
|
I. Boudjema and S. Djilali, Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application, Nonlinear Studies, 2018, 25(3), 665-687.
Google Scholar
|
[5]
|
E. Cagliero and E. Venturino, Ecoepidemics with infected prey in herd defense: the harmless and toxic cases, Int. J. Comput. Math., 2016, 93, 108-127. doi: 10.1080/00207160.2014.988614
CrossRef Google Scholar
|
[6]
|
J. Carr, Applications of Center Manifold Theory, New York, SpringerVerlag, 1981.
Google Scholar
|
[7]
|
M. Cavani and M. Farkas, Bifurcations in a predator-prey model with memory and diffusion. I: Andronov-hopf bifurcations, Acta Math Hungar, 1994, 63, 213-29. doi: 10.1007/BF01874129
CrossRef Google Scholar
|
[8]
|
S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability, Journal of Applied Mathematics and Computing, 2018, 58, 125-149. doi: 10.1007/s12190-017-1137-9
CrossRef Google Scholar
|
[9]
|
S.Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos, Solitons and Fractals, 2019, 120, 139-148. doi: 10.1016/j.chaos.2019.01.022
CrossRef Google Scholar
|
[10]
|
S. Djilali, T. M. Touaoula and S. E-H.Miri, A heroin epidemic model: very general non linear incidence, treat-age, and global stability, Acta Applicandae Mathematicae, 2017, 152(1), 171-194. doi: 10.1007/s10440-017-0117-2
CrossRef Google Scholar
|
[11]
|
T. Faria, Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion, Applied Mathematics and Computation, 2001, 254, 433-463.
Google Scholar
|
[12]
|
J. Luo and Y. Zhao, Stability and bifurcation analysis in a predator-prey system with constant harvesting and prey group defense, International Journal of Bifurcation and Chaos, 2017, 27, 1750179. doi: 10.1142/S0218127417501796
CrossRef Google Scholar
|
[13]
|
X. Liu, T. Zhang, X. Meng and T. Zhang, Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis, Physica A, 2018, 496, 446-460. doi: 10.1016/j.physa.2018.01.006
CrossRef Google Scholar
|
[14]
|
B. Liu, R. Wu and L. Chen, Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting, Mathematical Biosiences, 2018, 298, 71-79. doi: 10.1016/j.mbs.2018.02.002
CrossRef Google Scholar
|
[15]
|
C. V. Pao, Convergence of solutions of reaction-diffusion systems whith time delays, Nonlinear Analysis, 2002, 48, 349-362. doi: 10.1016/S0362-546X(00)00189-9
CrossRef Google Scholar
|
[16]
|
F. Rao, C. Chavez, Y. Kang, Dynamics of a diffusion reaction prey-predator model with delay in prey: Effecs of delay and spatial components, Journal of Mathematical Analysis and Applications, 2018, 461(2), 1177-1214. doi: 10.1016/j.jmaa.2018.01.046
CrossRef Google Scholar
|
[17]
|
Y. Song and X. Zou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonlinear Dynamics, 2017, 78, 49-70.
Google Scholar
|
[18]
|
Y. Song and X. Zou, Spatiotemporal dynamics in a diffusive Ratio-dependent predator-prey model near a Hopf-Turing bifurcation point, Computers and Mathematics with Applications, 2014, 67, 1978-1967. doi: 10.1016/j.camwa.2014.04.015
CrossRef Google Scholar
|
[19]
|
Y. Song, T. Zhang and Y. Peng, Turing-Hopf bifurcation in the reaction diffusion equations and its applications, Commun Nonlinear Sci NumerSimulat, 2015, 33, 229-258.
Google Scholar
|
[20]
|
Y. Song, Y. Peng and X. Zou, Persisstence, stability and Hopf bifurcation in a diffusive Ratio-Dependent predator-prey model with delay, International Journal of Bifurcation and Chaos, 2014, 24, 1450093. doi: 10.1142/S021812741450093X
CrossRef Google Scholar
|
[21]
|
Y. Song, H. Jiang, Q. X. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM Journal of Applied Dynamical Systems, 2017, 16, 2030-2062. doi: 10.1137/16M1097560
CrossRef Google Scholar
|
[22]
|
Y. Song and X. Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator- Prey Model with Herd Behavior and Prey-taxis, Stud. Appl. Math., 2017, 139, 371-404. doi: 10.1111/sapm.2017.139.issue-3
CrossRef Google Scholar
|
[23]
|
M. Sambath, K. Balachandran and L. N. Guin, Spatiotemporal patterns in a predator-prey model with cross-diffusion effect, International Journal of Bifurcation and Chaos, 2018, 28, 1830004. doi: 10.1142/S0218127418300045
CrossRef Google Scholar
|
[24]
|
X. Tang, H. Jiang, Z. Deng and T. Yu, Delay induced subcritical Hopf bifurcation in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Journal of Applied Analysis and Computation, 2017, 7, 1385-1401.
Google Scholar
|
[25]
|
X. Tang and Y. Song, Bifurcation analysis and Turing instability in a diffusive predator prey model with herd behavior and hyperbolic mortality, Chaos, Solitons and Fractals, 2015, 81, 303-3014. doi: 10.1016/j.chaos.2015.10.001
CrossRef Google Scholar
|
[26]
|
X. Tang and Y. Song, Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior, Nonlinear Analysis: Real World Applications, 2015, 24, 36-49. doi: 10.1016/j.nonrwa.2014.12.006
CrossRef Google Scholar
|
[27]
|
X. Tang and Y. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross diffusion, Nonlinear Dynamics, 2016, 86, 73-89. doi: 10.1007/s11071-016-2873-3
CrossRef Google Scholar
|
[28]
|
X. Tang and Y. Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Applied Mathematics and Computation, 2015, 254, 375-391. doi: 10.1016/j.amc.2014.12.143
CrossRef Google Scholar
|
[29]
|
E. Venturino, A minimal model for ecoepidemics with group defense, J. Biol. Syst., 2011, 19, 763-785. doi: 10.1142/S0218339011004184
CrossRef Google Scholar
|
[30]
|
E. Venturino, Modeling herd behavior in population systems, Nonlinear Analysis: Real World Applications, 2011, 12, 2319-2338. doi: 10.1016/j.nonrwa.2011.02.002
CrossRef Google Scholar
|
[31]
|
E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecological Complexity, 2013, 14, 37-47. doi: 10.1016/j.ecocom.2013.01.004
CrossRef Google Scholar
|
[32]
|
R. Wu, M.Chen, B. Liu and L. Chen, Hopf bifurcation and Turing instability in a predator-prey model with Michaelis-Menten functional reponse, Nonlinear Dynamics, 2018, 91(3), 2033-2047. doi: 10.1007/s11071-017-4001-4
CrossRef Google Scholar
|
[33]
|
C. Wang and S. Qi, Spatial dynamics of a predator-prey system with cross diffuusion, Chaos, Solitons and Fractals, 2018, 107, 55-60. doi: 10.1016/j.chaos.2017.12.020
CrossRef Google Scholar
|
[34]
|
C. Xu, C. Yuan and T. Zhang, Global dynamics of a predator-prey model with defence mechanism for prey, Applied Mathematics Letters, 2016, 62, 42-48. doi: 10.1016/j.aml.2016.06.013
CrossRef Google Scholar
|
[35]
|
Z. Xu and Y. Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality, Math. Meth. Appl. Sci., 2015, 38(4), 2994-3006.
Google Scholar
|
[36]
|
R. Yang and Y. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Analysis: Real World Applications, 2016, 31, 356-387. doi: 10.1016/j.nonrwa.2016.02.006
CrossRef Google Scholar
|
[37]
|
W. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Applied mathematical Modelling, 2017, 53, 433-446.
Google Scholar
|
[38]
|
H. Zhu and X. Zhang, Dynamics and Patterns of a Diffusive Prey-Predator System with a Group Defense for Prey, Discrete Dynamics in Nature and Society, 2018. DIO: 10.1155/2018/6519696. doi: 10.1155/2018/6519696
CrossRef Google Scholar
|