Citation: | Nolisa Malluwawadu, Saqib Hussain. A WEAK GALERKIN METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS WITH POLYNOMIAL REDUCTION[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 655-670. doi: 10.11948/2156-907X.20180137 |
[1] | D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 1982, 19(4), 742-760. |
[2] | D. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 2002, 39, 1749-1779. doi: 10.1137/S0036142901384162 |
[3] | K. Aziz, A. Settari, Petroleum Reservoir Simulations, Applied Science Publisher Ltd., London, 1979. |
[4] | G. A. Baker, Finite Elements Methods for Elliptic equations using nonconforming elements, Math. Comp., 1977, 31, 45-59. doi: 10.1090/S0025-5718-1977-0431742-5 |
[5] | C. E. Baumann, J. T. Oden, A discontinuous hp finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 1999, 175, 311-341. doi: 10.1016/S0045-7825(98)00359-4 |
[6] | J. Bear, Dynamics of Fluids in Porus Media, American Elsevier Publishing Company, New York, 1972. |
[7] | S. Brenner, R. Scott, The mathematical theory of Finite Element Methods, Springer-verlag, New York, 1994. |
[8] | F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 2005, 43(5), 1872-1896. doi: 10.1137/040613950 |
[9] | P. G. Ciarlet, The finite element method for Elliptic Problems, Noth-Holland, New York, 1978. |
[10] | L. Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 2015, 285, 45-58. arXiv:1304.6481v1. doi: 10.1016/j.cam.2015.02.001 |
[11] | L. Mu, J. Wang, X. Ye, S. Zhao, A numerical study on the weak Galerkin method for the Helmholtz equation with large wave numbers, arXiv: 1111.0671v1, 2. |
[12] | L. Mu, J. Wang, Y. Wang, X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proceedings in Mathematics and Statistics, 2013, 45, 247-277. doi: 10.1007/978-1-4614-7172-1 |
[13] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numerical Methods for PDEs, 2014, 30, 1003-1029. doi: 10.1002/num.v30.3 |
[14] | L. Mu, J. Wang, X. Ye, S. Zhang, A weak Galerkin finite element method for the Maxwell equations, Journal of Scientific Computing, 2015, 65, 363-386. doi: 10.1007/s10915-014-9964-4 |
[15] |
L. Mu, J. Wang, X. Ye, S. Zhang, A $C^0$-weak Galerkin finite element method for the biharmonic equation, Journal of Scientific Computing, 2014, 59(2), 473-495. doi: 10.1007/s10915-013-9770-4
CrossRef $C^0$-weak Galerkin finite element method for the biharmonic equation" target="_blank">Google Scholar |
[16] | B. Riviere, M. F. Wheeler, V. Girault, A priori error estimate for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 2001, 39, 902-931 doi: 10.1137/S003614290037174X |
[17] | B. Riviere, M. F. Wheeler, V. Girault, Improved energy estimates for Interior Penalty, Constrained and Discontinuous Galerkin methods for Elliptic Problems. Part I, Computational Geosciences, 1999, 8, 337-360. |
[18] | H. Wang, D. Liang, R. E. Ewing, S. L. Lyons, G. Qin, An Approximation to miscible fluid flows in pours media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods, SIAM Journal of Science and Computations, 2000, 22, 561-581. doi: 10.1137/S1064827598349215 |
[19] | J. Wang, X. Ye, A weak Galerkin finite element method for second order elliptic problems, Journal of Computational and Applied Mathematics, 2013, 241, 103-115. arXiv:1104.2897v1. doi: 10.1016/j.cam.2012.10.003 |
[20] | J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, arXiv: 1202.3655v2, 2012. |
[21] | J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equation, arXiv: 1302.2707, 2013. |
[22] | R. Zhang, Q. Zhai, A new weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 2015, 64(2), 559-585. |