[1]
|
V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. RWA, 2011, 12, 2319-2333. doi: 10.1016/j.nonrwa.2011.02.002
CrossRef Google Scholar
|
[2]
|
P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 2012, 13, 1837-1843. doi: 10.1016/j.nonrwa.2011.12.014
CrossRef Google Scholar
|
[3]
|
S. Chen, J. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal. RWA, 2013, 14, 1871-1886. doi: 10.1016/j.nonrwa.2012.12.004
CrossRef Google Scholar
|
[4]
|
X. Chang, J. Wei, Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting, Nonlinear Anal. Model. Cont., 2012, 17(4), 379-409.
Google Scholar
|
[5]
|
T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delay, Trans. Amer. Math. Soc., 2000, 352, 2217-2238. doi: 10.1090/S0002-9947-00-02280-7
CrossRef Google Scholar
|
[6]
|
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 2001, 254, 433-463. doi: 10.1006/jmaa.2000.7182
CrossRef Google Scholar
|
[7]
|
R. P. Gupta, M. Banerjee, P. Chandra, Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 2012, 20, 339-366. doi: 10.1007/s12591-012-0142-6
CrossRef Google Scholar
|
[8]
|
R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 2013, 398, 278-295. doi: 10.1016/j.jmaa.2012.08.057
CrossRef Google Scholar
|
[9]
|
R. P. Gupta, P. Chandra, M. Banerjee, Dynamical complexity of a predator-prey model with nonlinear predator harvesting, Discrete Contin. Dynam. Syst. Ser. B, 2015, 20(2), 423-443. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[10]
|
D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. RWA, 2017, 33, 58-82. doi: 10.1016/j.nonrwa.2016.05.010
CrossRef Google Scholar
|
[11]
|
C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 1999, 285, 838-838.
Google Scholar
|
[12]
|
Y. Li, M. Wang, Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting, Comput. Math. Appl., 2015, 69, 398-410. doi: 10.1016/j.camwa.2015.01.003
CrossRef Google Scholar
|
[13]
|
J. D. Murray, Mathematical Biology Ⅱ, Springer-Verlag, Heidelberg, 2002.
Google Scholar
|
[14]
|
S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 2009, 4(2), 140-188.
Google Scholar
|
[15]
|
Y. Song, X. Zou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonlinear Dyn., 2014, 78, 49-70. doi: 10.1007/s11071-014-1421-2
CrossRef Google Scholar
|
[16]
|
Y. Song, X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 2017, 139(3), 371-404. doi: 10.1111/sapm.2017.139.issue-3
CrossRef Google Scholar
|
[17]
|
Y. Song, H. Jiang, Q. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 2017, 16(4), 2030-2062. doi: 10.1137/16M1097560
CrossRef Google Scholar
|
[18]
|
Y. Song, Y. Peng, X. Zou, Persistence, stability and Hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay, Int. J. of Bifurcation Chaos, 2014, 24, 1450093. doi: 10.1142/S021812741450093X
CrossRef Google Scholar
|
[19]
|
X. Tang, Y. Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput., 2015, 254, 375-391.
Google Scholar
|
[20]
|
X. Tang, H. Jiang, Z. Deng, T. Yu, Delay induced subcritical Hopf bifurcation in a diffusive predator-prey model with herd behavior and hyperbalic mortality, J. Appl. Anal. Comput., 2017, 7(4), 1385-1401.
Google Scholar
|
[21]
|
X. Tang and Y. Song, Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior, Nonlinear Anal. RWA, 2015, 24, 36-49. doi: 10.1016/j.nonrwa.2014.12.006
CrossRef Google Scholar
|
[22]
|
X. Tang, Y. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 2016, 86(1), 73-89.
Google Scholar
|
[23]
|
X. Tang and Y. Song, Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fract., 2015, 81, 303-314. doi: 10.1016/j.chaos.2015.10.001
CrossRef Google Scholar
|
[24]
|
J. Wang, J. Shi, J. Wei, Dyanmics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equ., 2011, 251, 1276-1304. doi: 10.1016/j.jde.2011.03.004
CrossRef Google Scholar
|
[25]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, New York: Springer- Verlag, 1996.
Google Scholar
|
[26]
|
R. Yang, J. Wei, Stability and bifurcation analysis of a diffusive prey-predator system in Holling type Ⅲ with a prey refuge, Nonlinear Dyn., 2015, 79, 631-646. doi: 10.1007/s11071-014-1691-8
CrossRef Google Scholar
|
[27]
|
F. Yi, J. Wei, J. Shi, Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 2009, 246, 1944-1977. doi: 10.1016/j.jde.2008.10.024
CrossRef Google Scholar
|
[28]
|
R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 2015, 422, 1072-1090. doi: 10.1016/j.jmaa.2014.09.037
CrossRef Google Scholar
|
[29]
|
R. Yuan, Z. Wang, W. Jiang, Global Hopf bifurcation of a delayed diffusive predator-prey model with Michaelis-Menten-type prey harvesting, Appl. Anal., 2016, 95(2), 444-466. doi: 10.1080/00036811.2015.1007346
CrossRef Google Scholar
|
[30]
|
S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 2013, 23, 0331023.
Google Scholar
|
[31]
|
C. Zhu, L. Kong, Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting, Discrete Contin. Dynam. Syst. Ser. S, 2017, 10(5), 1187-1206.
Google Scholar
|