2019 Volume 9 Issue 2
Article Contents

Heping Jiang, Xiaosong Tang. HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 671-690. doi: 10.11948/2156-907X.20180142
Citation: Heping Jiang, Xiaosong Tang. HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 671-690. doi: 10.11948/2156-907X.20180142

HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING

  • Corresponding author: Email address: tangxs40@126.com(X. Tang)
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No. 11701208, No. 11761038), the Postdoctoral Science Foundation of China (No.2018M632093), the key project of Provincial Excellent Talents in University of Anhui Province (No.gxyqZD2018077), and the Natural Science Foundation of Huangshan University (No.2017xkjq001)
  • In this paper, the dynamics of a diffusive delayed predator-prey model with herd behavior and prey harvesting subject to the homogeneous Neumann boundary condition is considered. Firstly, choosing the harvesting term as a bifurcation parameter, then we obtain the existence and the stability of the equilibrium by analyzing the distribution of the roots of associated characteristic equation. Secondly, time delay is regarding as a bifurcation parameter, and the use of the normal form theory and center manifold theorem, the existence, stability and direction of bifurcating periodic solutions are all demonstrated detailly. Finally, summarizing some numerical simulations to illustrate the theoretical analysis.
    MSC: 35K57, 35B10
  • 加载中
  • [1] V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. RWA, 2011, 12, 2319-2333. doi: 10.1016/j.nonrwa.2011.02.002

    CrossRef Google Scholar

    [2] P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. RWA, 2012, 13, 1837-1843. doi: 10.1016/j.nonrwa.2011.12.014

    CrossRef Google Scholar

    [3] S. Chen, J. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal. RWA, 2013, 14, 1871-1886. doi: 10.1016/j.nonrwa.2012.12.004

    CrossRef Google Scholar

    [4] X. Chang, J. Wei, Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting, Nonlinear Anal. Model. Cont., 2012, 17(4), 379-409.

    Google Scholar

    [5] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delay, Trans. Amer. Math. Soc., 2000, 352, 2217-2238. doi: 10.1090/S0002-9947-00-02280-7

    CrossRef Google Scholar

    [6] T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 2001, 254, 433-463. doi: 10.1006/jmaa.2000.7182

    CrossRef Google Scholar

    [7] R. P. Gupta, M. Banerjee, P. Chandra, Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 2012, 20, 339-366. doi: 10.1007/s12591-012-0142-6

    CrossRef Google Scholar

    [8] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 2013, 398, 278-295. doi: 10.1016/j.jmaa.2012.08.057

    CrossRef Google Scholar

    [9] R. P. Gupta, P. Chandra, M. Banerjee, Dynamical complexity of a predator-prey model with nonlinear predator harvesting, Discrete Contin. Dynam. Syst. Ser. B, 2015, 20(2), 423-443. doi: 10.3934/dcdsb

    CrossRef Google Scholar

    [10] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. RWA, 2017, 33, 58-82. doi: 10.1016/j.nonrwa.2016.05.010

    CrossRef Google Scholar

    [11] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 1999, 285, 838-838.

    Google Scholar

    [12] Y. Li, M. Wang, Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting, Comput. Math. Appl., 2015, 69, 398-410. doi: 10.1016/j.camwa.2015.01.003

    CrossRef Google Scholar

    [13] J. D. Murray, Mathematical Biology Ⅱ, Springer-Verlag, Heidelberg, 2002.

    Google Scholar

    [14] S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 2009, 4(2), 140-188.

    Google Scholar

    [15] Y. Song, X. Zou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonlinear Dyn., 2014, 78, 49-70. doi: 10.1007/s11071-014-1421-2

    CrossRef Google Scholar

    [16] Y. Song, X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 2017, 139(3), 371-404. doi: 10.1111/sapm.2017.139.issue-3

    CrossRef Google Scholar

    [17] Y. Song, H. Jiang, Q. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 2017, 16(4), 2030-2062. doi: 10.1137/16M1097560

    CrossRef Google Scholar

    [18] Y. Song, Y. Peng, X. Zou, Persistence, stability and Hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay, Int. J. of Bifurcation Chaos, 2014, 24, 1450093. doi: 10.1142/S021812741450093X

    CrossRef Google Scholar

    [19] X. Tang, Y. Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput., 2015, 254, 375-391.

    Google Scholar

    [20] X. Tang, H. Jiang, Z. Deng, T. Yu, Delay induced subcritical Hopf bifurcation in a diffusive predator-prey model with herd behavior and hyperbalic mortality, J. Appl. Anal. Comput., 2017, 7(4), 1385-1401.

    Google Scholar

    [21] X. Tang and Y. Song, Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior, Nonlinear Anal. RWA, 2015, 24, 36-49. doi: 10.1016/j.nonrwa.2014.12.006

    CrossRef Google Scholar

    [22] X. Tang, Y. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 2016, 86(1), 73-89.

    Google Scholar

    [23] X. Tang and Y. Song, Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fract., 2015, 81, 303-314. doi: 10.1016/j.chaos.2015.10.001

    CrossRef Google Scholar

    [24] J. Wang, J. Shi, J. Wei, Dyanmics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equ., 2011, 251, 1276-1304. doi: 10.1016/j.jde.2011.03.004

    CrossRef Google Scholar

    [25] J. Wu, Theory and Applications of Partial Functional Differential Equations, New York: Springer- Verlag, 1996.

    Google Scholar

    [26] R. Yang, J. Wei, Stability and bifurcation analysis of a diffusive prey-predator system in Holling type Ⅲ with a prey refuge, Nonlinear Dyn., 2015, 79, 631-646. doi: 10.1007/s11071-014-1691-8

    CrossRef Google Scholar

    [27] F. Yi, J. Wei, J. Shi, Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 2009, 246, 1944-1977. doi: 10.1016/j.jde.2008.10.024

    CrossRef Google Scholar

    [28] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 2015, 422, 1072-1090. doi: 10.1016/j.jmaa.2014.09.037

    CrossRef Google Scholar

    [29] R. Yuan, Z. Wang, W. Jiang, Global Hopf bifurcation of a delayed diffusive predator-prey model with Michaelis-Menten-type prey harvesting, Appl. Anal., 2016, 95(2), 444-466. doi: 10.1080/00036811.2015.1007346

    CrossRef Google Scholar

    [30] S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 2013, 23, 0331023.

    Google Scholar

    [31] C. Zhu, L. Kong, Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting, Discrete Contin. Dynam. Syst. Ser. S, 2017, 10(5), 1187-1206.

    Google Scholar

Figures(9)

Article Metrics

Article views(3659) PDF downloads(975) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint