2019 Volume 9 Issue 2
Article Contents

Wei Luo, Xianyun Du. EXISTENCE OF TIME PERIODIC SOLUTIONS FOR THE 3-D VISCOUS PRIMITIVE EQUATIONS OF LARGE-SCALE DRY ATMOSPHERE[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 691-717. doi: 10.11948/2156-907X.20180143
Citation: Wei Luo, Xianyun Du. EXISTENCE OF TIME PERIODIC SOLUTIONS FOR THE 3-D VISCOUS PRIMITIVE EQUATIONS OF LARGE-SCALE DRY ATMOSPHERE[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 691-717. doi: 10.11948/2156-907X.20180143

EXISTENCE OF TIME PERIODIC SOLUTIONS FOR THE 3-D VISCOUS PRIMITIVE EQUATIONS OF LARGE-SCALE DRY ATMOSPHERE

  • Corresponding author: Email address:luo1102@foxmail.com(W. Luo) 
  • Fund Project: The authors were supported by the Applied Basic Research Programs of Sichuan Province (Grant No: 18YYJC0990)
  • In this paper, we consider the existence of time periodic solutions of the 3-D viscous primitive equations of large-scale dry atmosphere. We used the Galerkin method. Firstly, by Leray-Schauder fixed point theorem, we prove the existence of approximate solutions of the primitive equations, then we show the convergence of the approximate solutions, and we also get the uniqueness to the primitive equations.
    MSC: 35R45, 37L55
  • 加载中
  • [1] C. Cao, S. Ibrahim, K. Nakanishi, E. S. Titi, Finite-time Blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Commun.Math.Phys. 2015, 337, 473-482. doi: 10.1007/s00220-015-2365-1

    CrossRef Google Scholar

    [2] J. Cyranka, P. B. Mucha, E. S. Titi, Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow, Physica D Nonlinear Phenomena, 2017.

    Google Scholar

    [3] H. Fujita, T. Kato, On the Navier-Stokes initial value problem 1, Arch. Rational Mech. Anal., 1964.

    Google Scholar

    [4] B. Guo, B. Xie, Global existence of weak solutions for generalized quantum MHD equation, Annals of Applied Mathematics, 2017, 33(2), 111-129.

    Google Scholar

    [5] B. Guo, B. Xie, Global existence of weak solutions to the three-dimensional full compressible quantum equation, Annals of Applied Mathematics, 2018, 34(1), 1-31.

    Google Scholar

    [6] B. Guo, D. Huang, Existence of weak solutions and trajectory attractors for the moist [7]atmospheric equations in geophysics, J. Math. Phys., 2006.

    Google Scholar

    [7] B. Guo, D. Huang, Long-time dynamics for the 3-D viscousprimitive equations of large-scale moist atmosphere, Mathematics, 2007, 35(17), 5934-5943.

    Google Scholar

    [8] B. Guo, D. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta. Math. Sci., 2009, 29(4), 846-866. doi: 10.1016/S0252-9602(09)60074-6

    CrossRef Google Scholar

    [9] B. Guo, D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Diff. Eqs., 2011, 251(3), 457-491. doi: 10.1016/j.jde.2011.05.010

    CrossRef Google Scholar

    [10] B. Guo, X. Du, Existence of the Periodic Solution for the Weakly Damped Schrodinger–Boussinesq Equation, J. Math. Anal. Appl., 2001, 262, 453-472. doi: 10.1006/jmaa.2000.7455

    CrossRef Google Scholar

    [11] G. P. Galdi, T. Kashiwabara, Strong time-periodic solutions to the 3D primitive equations subject to arbitrary large forces, Nonlinearity, 2015.

    Google Scholar

    [12] D. Huang, B. Guo, On the existence of atmospheric attractors, Science in china series D-earth sciences, 2008, 51(3), 469-480. doi: 10.1007/s11430-007-0103-z

    CrossRef Google Scholar

    [13] M. Hong, On the global well-posedness of the 3D viscous primitive equations, Journal of Applied Analysis and Computation, 2017, 7(1), 102-118.

    Google Scholar

    [14] H. Honda, A. Tani, Some boundedness of solutions for the primitive equations of the atmosphere and the ocean, Z.Angew.Math.Mech, 2015, 95(1), 38-48. doi: 10.1002/zamm.v95.1

    CrossRef Google Scholar

    [15] Ch. Jin, Periodic solution for a non-isentropic compressible Navier-Stokes equations in a bounded domain, J. Math. Phys., 2015, 56.

    Google Scholar

    [16] H. Kato, Existence of periodic solutions of the Navier-Stokes equations, J. Math. Anal. Appl., 1997, 208, 141-157. doi: 10.1006/jmaa.1997.5307

    CrossRef Google Scholar

    [17] J. L. Lions, R. Temam, S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 1992, 5, 237-288. doi: 10.1088/0951-7715/5/2/001

    CrossRef Google Scholar

    [18] J. Li, J. Chou, Existence of atmosphere attractors, Science in china series D-earth sciences, 1997, 40(2), 215-224. doi: 10.1007/BF02878381

    CrossRef Google Scholar

    [19] Q. Long, J. Chen, Finite time blow-up and global existence of weak solutions for pseudo-parabolic equation with exponential nonlinearity, Journal of Applied Analysis and Computation, 2018, 8(1), 105-122.

    Google Scholar

    [20] J. Li, E. S. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for certain class of discontinuous initial data, SIAM Journal on Mathematical Analysis, 2015.

    Google Scholar

    [21] L. F. Richardson, Weather Prediction by Numerical Press, Cambridge University Press, Cambridge, 1922.

    Google Scholar

    [22] H. Sun and Y. Jong, Pullback attractor for a non-autonomous modified Swift- Hohenberg equation, Computers and Mathematics with Applications, 2014, 67, 542-548. doi: 10.1016/j.camwa.2013.11.011

    CrossRef Google Scholar

    [23] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition, Appl. Math. Sci., 1997, 68.

    Google Scholar

    [24] S. Wang, On the 2-D model of large-scale atmospheric motion: well-posedness and attractors, Nonlinear Anal., 1992, 18(1), 17-60. doi: 10.1016/0362-546X(92)90046-H

    CrossRef Google Scholar

Article Metrics

Article views(2784) PDF downloads(577) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint