[1]
|
C. Cao, S. Ibrahim, K. Nakanishi, E. S. Titi, Finite-time Blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Commun.Math.Phys. 2015, 337, 473-482. doi: 10.1007/s00220-015-2365-1
CrossRef Google Scholar
|
[2]
|
J. Cyranka, P. B. Mucha, E. S. Titi, Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow, Physica D Nonlinear Phenomena, 2017.
Google Scholar
|
[3]
|
H. Fujita, T. Kato, On the Navier-Stokes initial value problem 1, Arch. Rational Mech. Anal., 1964.
Google Scholar
|
[4]
|
B. Guo, B. Xie, Global existence of weak solutions for generalized quantum MHD equation, Annals of Applied Mathematics, 2017, 33(2), 111-129.
Google Scholar
|
[5]
|
B. Guo, B. Xie, Global existence of weak solutions to the three-dimensional full compressible quantum equation, Annals of Applied Mathematics, 2018, 34(1), 1-31.
Google Scholar
|
[6]
|
B. Guo, D. Huang, Existence of weak solutions and trajectory attractors for the moist [7]atmospheric equations in geophysics, J. Math. Phys., 2006.
Google Scholar
|
[7]
|
B. Guo, D. Huang, Long-time dynamics for the 3-D viscousprimitive equations of large-scale moist atmosphere, Mathematics, 2007, 35(17), 5934-5943.
Google Scholar
|
[8]
|
B. Guo, D. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta. Math. Sci., 2009, 29(4), 846-866. doi: 10.1016/S0252-9602(09)60074-6
CrossRef Google Scholar
|
[9]
|
B. Guo, D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Diff. Eqs., 2011, 251(3), 457-491. doi: 10.1016/j.jde.2011.05.010
CrossRef Google Scholar
|
[10]
|
B. Guo, X. Du, Existence of the Periodic Solution for the Weakly Damped Schrodinger–Boussinesq Equation, J. Math. Anal. Appl., 2001, 262, 453-472. doi: 10.1006/jmaa.2000.7455
CrossRef Google Scholar
|
[11]
|
G. P. Galdi, T. Kashiwabara, Strong time-periodic solutions to the 3D primitive equations subject to arbitrary large forces, Nonlinearity, 2015.
Google Scholar
|
[12]
|
D. Huang, B. Guo, On the existence of atmospheric attractors, Science in china series D-earth sciences, 2008, 51(3), 469-480. doi: 10.1007/s11430-007-0103-z
CrossRef Google Scholar
|
[13]
|
M. Hong, On the global well-posedness of the 3D viscous primitive equations, Journal of Applied Analysis and Computation, 2017, 7(1), 102-118.
Google Scholar
|
[14]
|
H. Honda, A. Tani, Some boundedness of solutions for the primitive equations of the atmosphere and the ocean, Z.Angew.Math.Mech, 2015, 95(1), 38-48. doi: 10.1002/zamm.v95.1
CrossRef Google Scholar
|
[15]
|
Ch. Jin, Periodic solution for a non-isentropic compressible Navier-Stokes equations in a bounded domain, J. Math. Phys., 2015, 56.
Google Scholar
|
[16]
|
H. Kato, Existence of periodic solutions of the Navier-Stokes equations, J. Math. Anal. Appl., 1997, 208, 141-157. doi: 10.1006/jmaa.1997.5307
CrossRef Google Scholar
|
[17]
|
J. L. Lions, R. Temam, S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 1992, 5, 237-288. doi: 10.1088/0951-7715/5/2/001
CrossRef Google Scholar
|
[18]
|
J. Li, J. Chou, Existence of atmosphere attractors, Science in china series D-earth sciences, 1997, 40(2), 215-224. doi: 10.1007/BF02878381
CrossRef Google Scholar
|
[19]
|
Q. Long, J. Chen, Finite time blow-up and global existence of weak solutions for pseudo-parabolic equation with exponential nonlinearity, Journal of Applied Analysis and Computation, 2018, 8(1), 105-122.
Google Scholar
|
[20]
|
J. Li, E. S. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for certain class of discontinuous initial data, SIAM Journal on Mathematical Analysis, 2015.
Google Scholar
|
[21]
|
L. F. Richardson, Weather Prediction by Numerical Press, Cambridge University Press, Cambridge, 1922.
Google Scholar
|
[22]
|
H. Sun and Y. Jong, Pullback attractor for a non-autonomous modified Swift- Hohenberg equation, Computers and Mathematics with Applications, 2014, 67, 542-548. doi: 10.1016/j.camwa.2013.11.011
CrossRef Google Scholar
|
[23]
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition, Appl. Math. Sci., 1997, 68.
Google Scholar
|
[24]
|
S. Wang, On the 2-D model of large-scale atmospheric motion: well-posedness and attractors, Nonlinear Anal., 1992, 18(1), 17-60. doi: 10.1016/0362-546X(92)90046-H
CrossRef Google Scholar
|