2019 Volume 9 Issue 2
Article Contents

Ali Deliceoğlu, Deniz Bozkurt. STRUCTURAL BIFURCATION OF DIVERGENCE-FREE VECTOR FIELDS NEAR NON-SIMPLE DEGENERATE POINTS WITH SYMMETRY[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 718-738. doi: 10.11948/2156-907X.20180151
Citation: Ali Deliceoğlu, Deniz Bozkurt. STRUCTURAL BIFURCATION OF DIVERGENCE-FREE VECTOR FIELDS NEAR NON-SIMPLE DEGENERATE POINTS WITH SYMMETRY[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 718-738. doi: 10.11948/2156-907X.20180151

STRUCTURAL BIFURCATION OF DIVERGENCE-FREE VECTOR FIELDS NEAR NON-SIMPLE DEGENERATE POINTS WITH SYMMETRY

  • In this study, topological features of an incompressible two-dimensional flow far from any boundaries is considered. A rigorous theory has been developed for degenerate streamline patterns and their bifurcation. The homotopy invariance of the index is used to simplify the differential equations of fluid flows which are parameter families of divergence-free vector fields. When the degenerate flow pattern is perturbed slightly, a structural bifurcation for flows with symmetry is obtained. We give possible flow structures near a bifurcation point. A flow pattern is found where a degenerate cusp point appears on the x-axis. Moreover, we also show that bifurcation of the flow structure near a non-simple degenerate critical point with double symmetry is generic away from boundaries. Finally, we give an application of the degenerate flow patterns emerging when index 0 and -2 in a double lid driven cavity and in two dimensional peristaltic flow.
    MSC: 34D, 35Q35, 58F76, 86A10
  • 加载中
  • [1] Z. Asgard and N. Ali, Streamline topologies and their bifurcations for mixed convective peristaltic flow, AIP Advances, 2015, 5, 097142. doi: 10.1063/1.4931088

    CrossRef Google Scholar

    [2] A. Balcı, M. Andersen, M. C. Thompson, and M. Brøns, Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption, Phys. Fluids, 2015, 27, 053603. doi: 10.1063/1.4921527

    CrossRef Google Scholar

    [3] A. Balcı, M. Brøns, M. A. Herrada and V. N. Shtern, Patterns of a slow air-water flow in a semispherical container, European Journal of Mechanics, B/Fluids, 2016, 58, 053603.

    Google Scholar

    [4] A. Beltrán, E. Ramos, S. Cuevas, M. Brøns, Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle, Physical Review E, 2010, 81(3), 036309. doi: 10.1103/PhysRevE.81.036309

    CrossRef Google Scholar

    [5] H. Bilgil and F. Gürcan, Effect of the Reynolds number on flow bifurcations and eddy genesis in a lid-driven sectorial cavity, Japan J. Indust. Appl. Math., 2016, 33(2), 343-360. doi: 10.1007/s13160-016-0212-1

    CrossRef Google Scholar

    [6] A. V. Bisgaard, M. Brøns and J. N. Sørensen, Vortex breakdown generated by off-axis bifurcation in a circular cylinder with rotating covers, Acta Mech., 2006, 187(1), 75-83.

    Google Scholar

    [7] D. Bozkurt, A. Deliceoğlu, and T. Şengül, Interior structural bifurcation of 2D symmetric incompressible flows, arXiv: 1712.01784, 2017.

    Google Scholar

    [8] M. Brøns and J. N. Hartnack, Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries, Phys. Fluids, 1999, 11(2), 314-324.

    Google Scholar

    [9] M. Brøns, L. K. Voigt and J. N. Sørensen, Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface, J. Fluid Mech., 2001, 428, 133-148. doi: 10.1017/S0022112000002512

    CrossRef Google Scholar

    [10] M. Brøns and A. V. Bisgaard, Bifurcation of vortex breakdown patterns in a circular cylinder with two rotating covers, J. Fluid Mech., 2006, 568, 329-349. doi: 10.1017/S0022112006002424

    CrossRef Google Scholar

    [11] M. Brøns, M. Jakobsen, K. Niss, A. V. Bisgaard and L. K. Voigt, Streamline topology in the near wake of a circular cylinder at moderate Reynolds numbers, J. Fluid Mech., 2007, 584, 23-43. doi: 10.1017/S0022112007006234

    CrossRef Google Scholar

    [12] C. H. Chan, M. Czubak and T. Yoneda, An ODE for boundary layer separation on a sphere and a hyperbolic space, Physica D: Non-linear Phenomena, 2014, 282, 34-38. doi: 10.1016/j.physd.2014.05.004

    CrossRef Google Scholar

    [13] M. Dam, J. J. Rasmussen, V. Naulin and M. Brøns, Topological bifurcations in the evolution of coherent structures in a convection model, Physics of Plasmas, 2017, 24(8), 082301. doi: 10.1063/1.4993613

    CrossRef Google Scholar

    [14] A. Deliceoğlu and F. Gürcan, Streamline topology near non-simple degenerate critical points in two dimensional flow with symmetry about an axis, J. Fluid Mech., 2008, 606, 417-432. doi: 10.1017/S0022112008001997

    CrossRef Google Scholar

    [15] F. Gürcan and A. Deliceoğlu, Streamline topologies near non-simple degenerate points in two dimensional flows with double symmetry away from boundaries and an application, Physics of Fluids, 2005, 17, 093116.

    Google Scholar

    [16] F. Gürcan, and A. Deliceoğlu, Saddle connections near degenerate critical points in Stokes flow within cavities, Appl. Math. Comput., 2006, 172(2), 1133-1144.

    Google Scholar

    [17] F. Gürcan, Flow bifurcations in rectangular, lid-driven, cavity flows, Ph.D Thesis, University of Leeds, 1997.

    Google Scholar

    [18] F. Gürcan, H. Bilgil and A. ahin, Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids, European Journal of Mechanics, B/Fluids, 2016, 56, 200-210. doi: 10.1016/j.euromechflu.2015.02.008

    CrossRef Google Scholar

    [19] M. Ghil, T. Ma and S. Wang, Structural bifurcation of 2-D incompressible flows, Indiana University Mathematics Journal, 2001, 50(1), 159-180. doi: 10.1512/iumj.2001.50.2183

    CrossRef Google Scholar

    [20] M. Ghil, T. Ma and S. Wang, Structural bifurcation of 2-D nondivergent flows with dirichlet boundary conditions: Applications to boundary-layer separation, SIAM Journal on Applied Mathematics, 2005, 65(5), 1576-1596. doi: 10.1137/S0036139903438818

    CrossRef Google Scholar

    [21] M. Ghil, J.-G. Liu, C. Wang and S. Wang, Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow, Physica D: Nonlinear Phenomena, 2004, 197, 149-173. doi: 10.1016/j.physd.2004.06.012

    CrossRef Google Scholar

    [22] J. N. Hartnack, Streamlines topologies near a fixed wall using normal form, Acta Mech., 1999, 136(1), 55-75.

    Google Scholar

    [23] M. Heil, J. Rosso, A. L. Hazel and M. Brøns, Topological fluid mechanics of the formation of the Kármán-vortex street, J. Fluid Mech., 2017, 812, 199-221. doi: 10.1017/jfm.2016.792

    CrossRef Google Scholar

    [24] C. H. Hsia, J.-G. Liu, C. Wang, Structural stability and bifurcation for 2-D incompressible flows with symmetry, Methods and applications of analysis, 2008, 15(4), 495-512. doi: 10.4310/MAA.2008.v15.n4.a6

    CrossRef Google Scholar

    [25] J. Jiménez-Lozano and M. Sen, Streamline topologies of two-dimensional peristaltic flow and their bifurcations, Chemical Engineering and Processing: Process Intensification, 2010, 49(7), 704-715. doi: 10.1016/j.cep.2009.10.005

    CrossRef Google Scholar

    [26] J.-G. Liu, C. Wang and H. Johnston, A fourth order scheme for incompressible boussinesq equations, J. Sci. Comp., 2003, 18(2), 253-285. doi: 10.1023/A:1021168924020

    CrossRef Google Scholar

    [27] H. Luo, Q. Wang and T. Ma, A predicable condition for boundary layer separation of 2-D incompressible fluid flows, Non-linear Analysis: Real World Applications, 2015, 22(1), 336-341.

    Google Scholar

    [28] T. Ma and S. Wang, Interior structural bifurcation and separation of 2D incompressible flows, J. Math. Phys., 2004, 45(5), 1762-1776. doi: 10.1063/1.1689005

    CrossRef Google Scholar

    [29] T. Ma and S. Wang, Geometric theory of incompressible flows with applications to fluid dynamics, Mathematical Surveys and Monographs, American Mathematical Society, 2005.

    Google Scholar

    [30] T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields, Physica D, 2002, 171, 107-126. doi: 10.1016/S0167-2789(02)00587-0

    CrossRef Google Scholar

    [31] T. Ma and S. Wang, Structure of 2d incompressible flows with the dirichlet boundary conditions, Discrete and Continuous Dynamical Systems-Series B, 2001, 1(1), 29-41. doi: 10.3934/dcdsb

    CrossRef Google Scholar

    [32] T. Ma and S. Wang, Topological Phase Transitions IV: Dynamic Theory Of Boundary-layer Separations, hal-01672759, 2017.

    Google Scholar

    [33] Q. Wang, H. Luo and T. Ma, Boundary layer separation of 2-D incompressible dirichlet flows, Discrete and Continuous Dynamical Systems-Series B, 2015, 20(2), 675-682. doi: 10.3934/dcdsb

    CrossRef Google Scholar

    [34] C. Wang, J.-G. Liu and H. Johnston, Analysis of a fourth order finite difference method for incompressible boussinesq equations, Numer. Math., 2004, 97(3), 255-294.

    Google Scholar

Figures(12)

Article Metrics

Article views(3042) PDF downloads(646) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint