[1]
|
Z. Asgard and N. Ali, Streamline topologies and their bifurcations for mixed convective peristaltic flow, AIP Advances, 2015, 5, 097142. doi: 10.1063/1.4931088
CrossRef Google Scholar
|
[2]
|
A. Balcı, M. Andersen, M. C. Thompson, and M. Brøns, Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption, Phys. Fluids, 2015, 27, 053603. doi: 10.1063/1.4921527
CrossRef Google Scholar
|
[3]
|
A. Balcı, M. Brøns, M. A. Herrada and V. N. Shtern, Patterns of a slow air-water flow in a semispherical container, European Journal of Mechanics, B/Fluids, 2016, 58, 053603.
Google Scholar
|
[4]
|
A. Beltrán, E. Ramos, S. Cuevas, M. Brøns, Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle, Physical Review E, 2010, 81(3), 036309. doi: 10.1103/PhysRevE.81.036309
CrossRef Google Scholar
|
[5]
|
H. Bilgil and F. Gürcan, Effect of the Reynolds number on flow bifurcations and eddy genesis in a lid-driven sectorial cavity, Japan J. Indust. Appl. Math., 2016, 33(2), 343-360. doi: 10.1007/s13160-016-0212-1
CrossRef Google Scholar
|
[6]
|
A. V. Bisgaard, M. Brøns and J. N. Sørensen, Vortex breakdown generated by off-axis bifurcation in a circular cylinder with rotating covers, Acta Mech., 2006, 187(1), 75-83.
Google Scholar
|
[7]
|
D. Bozkurt, A. Deliceoğlu, and T. Şengül, Interior structural bifurcation of 2D symmetric incompressible flows, arXiv: 1712.01784, 2017.
Google Scholar
|
[8]
|
M. Brøns and J. N. Hartnack, Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries, Phys. Fluids, 1999, 11(2), 314-324.
Google Scholar
|
[9]
|
M. Brøns, L. K. Voigt and J. N. Sørensen, Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface, J. Fluid Mech., 2001, 428, 133-148. doi: 10.1017/S0022112000002512
CrossRef Google Scholar
|
[10]
|
M. Brøns and A. V. Bisgaard, Bifurcation of vortex breakdown patterns in a circular cylinder with two rotating covers, J. Fluid Mech., 2006, 568, 329-349. doi: 10.1017/S0022112006002424
CrossRef Google Scholar
|
[11]
|
M. Brøns, M. Jakobsen, K. Niss, A. V. Bisgaard and L. K. Voigt, Streamline topology in the near wake of a circular cylinder at moderate Reynolds numbers, J. Fluid Mech., 2007, 584, 23-43. doi: 10.1017/S0022112007006234
CrossRef Google Scholar
|
[12]
|
C. H. Chan, M. Czubak and T. Yoneda, An ODE for boundary layer separation on a sphere and a hyperbolic space, Physica D: Non-linear Phenomena, 2014, 282, 34-38. doi: 10.1016/j.physd.2014.05.004
CrossRef Google Scholar
|
[13]
|
M. Dam, J. J. Rasmussen, V. Naulin and M. Brøns, Topological bifurcations in the evolution of coherent structures in a convection model, Physics of Plasmas, 2017, 24(8), 082301. doi: 10.1063/1.4993613
CrossRef Google Scholar
|
[14]
|
A. Deliceoğlu and F. Gürcan, Streamline topology near non-simple degenerate critical points in two dimensional flow with symmetry about an axis, J. Fluid Mech., 2008, 606, 417-432. doi: 10.1017/S0022112008001997
CrossRef Google Scholar
|
[15]
|
F. Gürcan and A. Deliceoğlu, Streamline topologies near non-simple degenerate points in two dimensional flows with double symmetry away from boundaries and an application, Physics of Fluids, 2005, 17, 093116.
Google Scholar
|
[16]
|
F. Gürcan, and A. Deliceoğlu, Saddle connections near degenerate critical points in Stokes flow within cavities, Appl. Math. Comput., 2006, 172(2), 1133-1144.
Google Scholar
|
[17]
|
F. Gürcan, Flow bifurcations in rectangular, lid-driven, cavity flows, Ph.D Thesis, University of Leeds, 1997.
Google Scholar
|
[18]
|
F. Gürcan, H. Bilgil and A. ahin, Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids, European Journal of Mechanics, B/Fluids, 2016, 56, 200-210. doi: 10.1016/j.euromechflu.2015.02.008
CrossRef Google Scholar
|
[19]
|
M. Ghil, T. Ma and S. Wang, Structural bifurcation of 2-D incompressible flows, Indiana University Mathematics Journal, 2001, 50(1), 159-180. doi: 10.1512/iumj.2001.50.2183
CrossRef Google Scholar
|
[20]
|
M. Ghil, T. Ma and S. Wang, Structural bifurcation of 2-D nondivergent flows with dirichlet boundary conditions: Applications to boundary-layer separation, SIAM Journal on Applied Mathematics, 2005, 65(5), 1576-1596. doi: 10.1137/S0036139903438818
CrossRef Google Scholar
|
[21]
|
M. Ghil, J.-G. Liu, C. Wang and S. Wang, Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow, Physica D: Nonlinear Phenomena, 2004, 197, 149-173. doi: 10.1016/j.physd.2004.06.012
CrossRef Google Scholar
|
[22]
|
J. N. Hartnack, Streamlines topologies near a fixed wall using normal form, Acta Mech., 1999, 136(1), 55-75.
Google Scholar
|
[23]
|
M. Heil, J. Rosso, A. L. Hazel and M. Brøns, Topological fluid mechanics of the formation of the Kármán-vortex street, J. Fluid Mech., 2017, 812, 199-221. doi: 10.1017/jfm.2016.792
CrossRef Google Scholar
|
[24]
|
C. H. Hsia, J.-G. Liu, C. Wang, Structural stability and bifurcation for 2-D incompressible flows with symmetry, Methods and applications of analysis, 2008, 15(4), 495-512. doi: 10.4310/MAA.2008.v15.n4.a6
CrossRef Google Scholar
|
[25]
|
J. Jiménez-Lozano and M. Sen, Streamline topologies of two-dimensional peristaltic flow and their bifurcations, Chemical Engineering and Processing: Process Intensification, 2010, 49(7), 704-715. doi: 10.1016/j.cep.2009.10.005
CrossRef Google Scholar
|
[26]
|
J.-G. Liu, C. Wang and H. Johnston, A fourth order scheme for incompressible boussinesq equations, J. Sci. Comp., 2003, 18(2), 253-285. doi: 10.1023/A:1021168924020
CrossRef Google Scholar
|
[27]
|
H. Luo, Q. Wang and T. Ma, A predicable condition for boundary layer separation of 2-D incompressible fluid flows, Non-linear Analysis: Real World Applications, 2015, 22(1), 336-341.
Google Scholar
|
[28]
|
T. Ma and S. Wang, Interior structural bifurcation and separation of 2D incompressible flows, J. Math. Phys., 2004, 45(5), 1762-1776. doi: 10.1063/1.1689005
CrossRef Google Scholar
|
[29]
|
T. Ma and S. Wang, Geometric theory of incompressible flows with applications to fluid dynamics, Mathematical Surveys and Monographs, American Mathematical Society, 2005.
Google Scholar
|
[30]
|
T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields, Physica D, 2002, 171, 107-126. doi: 10.1016/S0167-2789(02)00587-0
CrossRef Google Scholar
|
[31]
|
T. Ma and S. Wang, Structure of 2d incompressible flows with the dirichlet boundary conditions, Discrete and Continuous Dynamical Systems-Series B, 2001, 1(1), 29-41. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[32]
|
T. Ma and S. Wang, Topological Phase Transitions IV: Dynamic Theory Of Boundary-layer Separations, hal-01672759, 2017.
Google Scholar
|
[33]
|
Q. Wang, H. Luo and T. Ma, Boundary layer separation of 2-D incompressible dirichlet flows, Discrete and Continuous Dynamical Systems-Series B, 2015, 20(2), 675-682. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[34]
|
C. Wang, J.-G. Liu and H. Johnston, Analysis of a fourth order finite difference method for incompressible boussinesq equations, Numer. Math., 2004, 97(3), 255-294.
Google Scholar
|