2019 Volume 9 Issue 2
Article Contents

Anar Adiloglu Nabiev, Ekrem Savaş, Mehmet Gürdal. STATISTICALLY LOCALIZED SEQUENCES IN METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 739-746. doi: 10.11948/2156-907X.20180157
Citation: Anar Adiloglu Nabiev, Ekrem Savaş, Mehmet Gürdal. STATISTICALLY LOCALIZED SEQUENCES IN METRIC SPACES[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 739-746. doi: 10.11948/2156-907X.20180157

STATISTICALLY LOCALIZED SEQUENCES IN METRIC SPACES

  • In this paper we have introduced the statistically localized sequences in metric spaces and investigate basic properties of the statistically localized sequences. Also we have obtained some necessary and sufficient conditions for a localized sequence to be a statistically Cauchy sequence. It is also defined uniformly statistically localized sequences on metric spaces and its relation with statistically Cauchy sequences has been investigated.
    MSC: 40A35
  • 加载中
  • [1] P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaest. Math., 2018, 41(8), 1117-1133. doi: 10.2989/16073606.2017.1420705

    CrossRef Google Scholar

    [2] N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin mean, Appl. Math. Comput., 2014, 228, 162-169.

    Google Scholar

    [3] H. Busemann, The geometry of geodesics, New York, 1955.

    Google Scholar

    [4] B. J. Connor, The statistical and strong p-Cesaro convergence of sequences. Analysis (Munich), 1988, 8, 47-63.

    Google Scholar

    [5] R. Erdös and G. Tenenbaum, Sur les densities de certaines suites dentiers, Proc. London Math. Soc., 1989, 59(3), 417-438.

    Google Scholar

    [6] H. Fast, Sur la convergence statistique, Colloq. Math., 1951, 2, 241-244. doi: 10.4064/cm-2-3-4-241-244

    CrossRef Google Scholar

    [7] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math., 1981, 95(2), 293-305 doi: 10.2140/pjm

    CrossRef Google Scholar

    [8] J. A. Fridy, On statistical convergence, Analysis (Munich), 1985, 5, 301-313.

    Google Scholar

    [9] U. Kadak and S. A. Mohiuddine, Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (p, q)-Gamma Function and Related Approximation Theorems, Results Math., 2018, 73: 9. https://doi.org/10.1007/s00025-018-0789-6.

    Google Scholar

    [10] J. L. Kelley, General Topology, Springer, 1955.

    Google Scholar

    [11] L. N. Krivonosov, Localized sequences in metric spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 1974, 4, 45-54; Soviet Math. (Iz. VUZ), 1974, 18(4), 37-44.

    Google Scholar

    [12] G. D. Maio and L. D. R. Kocinac, Statistical convergence in topology, Topology Appl., 2008, 156, 28-45. doi: 10.1016/j.topol.2008.01.015

    CrossRef Google Scholar

    [13] F. Nuray, U. Ulusu and E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Computing, 2016, 20(7), 2883-2888. doi: 10.1007/s00500-015-1691-8

    CrossRef Google Scholar

    [14] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 1951, 2, 73-74.

    Google Scholar

    [15] S. Yegül and E. Dündar, On Statistical Convergence of Sequences of functions in 2-normed spaces, J. Classical Anal., 2017, 10(1), 49-57.

    Google Scholar

Article Metrics

Article views(2568) PDF downloads(930) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint