Citation: | Mohammad Imdad, Atiya Perveen, Waleed M. Alfaqih. FIXED POINT THEOREMS FOR MULTIVALUED NON-LINEAR F-CONTRACTIONS ON QUASI METRIC SPACES WITH AN APPLICATION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 901-915. doi: 10.11948/2156-907X.20180149 |
[1] | M. Abbas, B. Ali and S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory and Applications, 2013, 243. |
[2] | Ö. Acar, G. Durmaz and Gü. Minak, Generalized multivalued F-contractions on complete metric spaces, Bulletin of the Iranian Mathematical Society, 2014, 40(6), 1469-1478. |
[3] | M. U. Ali, T. Kamran, W. Sintunavarat and P. Katchang, Mizoguchi-Takahashi's fixed point theorem with $\alpha,\eta$ functions, Abstract and Applied Analysis, Hindawi Publishing Corporation, 2013.http://dx.doi.org/10.1155/2013/418798. |
[4] | I. Altun, G. Minak and H. Dag, Multivalued F-contractions on complete metric space, J. Nonlinear Convex Anal, 2015, 16(4), 659-666. |
[5] | G. Berthiaume, On quasi-uniformities in hyperspaces, Proceedings of the American Mathematical Society, 1977, 66(2), 335-343. doi: 10.1090/S0002-9939-1977-0482620-9 |
[6] | L. Budhia, P. Kumam, J. Martínez-Moreno and D. Gopal, Extensions of almost-$F$ and $F$-suzuki contractions with graph and some applications to fractional calculus, Fixed Point Theory and Applications, 2016, 2016(2). |
[7] | S. Cobzas, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer Basel, 2012. |
[8] | H. Dag, G. Minak and I. Altun, Some fixed point results for multivalued $F$-contractions on quasi metric spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A. Matemáticas, 2017, 111(1), 177-187. |
[9] | N. V. Dung and V. T. L. Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam Journal of Mathematics, 2015, 4(43), 743-753. |
[10] | R. Gubran, M. Imdad, I. A. Khan and W. M. Alfaqih, Order-theoretic common fixed point results for F-contractions, Bulletin of Mathematical Analysis and Applications, 2018, 1(10), 80-88. |
[11] | A. Hussain, M. Arshad and M. Abbas, New type of fixed point result of F-contraction with applications, Journal of Applied Analysis and Computation, 2017, 8(1), 1112-1126. |
[12] |
M. Imdad, R. Gubran, M. Arif and D. Gopal, An observation on $\alpha$-type $F$-contractions and some ordered-theoretic fixed point results, Mathematical Sciences, 2017, 11(3), 247-255. doi: 10.1007/s40096-017-0231-3
CrossRef $\alpha$-type |
[13] | M. Imdad, Q. H. Khan, W. M. Alfaqih and R. Gubran, A relation theoretic $({F},\mathcal{R})$-contraction principle with applications to matrix equations, Bulletin of Mathematical Analysis and Applications, 2018, 1(10), 1-12. |
[14] |
I. Iqbal, N. Hussain and N. Sultana, Fixed points of multivalued non-linear $F$-contractions with application to solution of matrix equations, Filomat, 2017, 31(11), 3319-3333. doi: 10.2298/FIL1711319I
CrossRef $F$-contractions with application to solution of matrix equations" target="_blank">Google Scholar |
[15] |
E. Karapinar, M. A. Kutbi, H. Piri and D. O'Regan, Fixed points of conditionally $F$-contractions in complete metric-like spaces, Fixed Point Theory and Applications, 2015, 2015(126).
$F$-contractions in complete metric-like spaces" target="_blank">Google Scholar |
[16] | H. P. A. Künzi, J. Rodríguez-Lpez and S. Romaguera, Hyperspaces of a weightable quasi-metric space: Application to models in the theory of computation, Mathematical and Computer Modelling, 2010, 52(5), 674-682. |
[17] | H. K. Nashine, M. Imdad and M. Ahmadullah, Common fixed point theorems for hybrid generalized ($f,\varphi$)-contractions under common limit range property with applications, Ukrainian Mathematical Journal, 2016.https://arxiv.org/abs/1604.00121. |
[18] | H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory and Applications, 2014, 2014(210). |
[19] | J. Rodríguez-Lóopez and S. Romaguera, The relationship between the vietoris toplogy and the hausdorff quasi-uniformity, Topology and its Applications, 2002, 124(3), 451-464. doi: 10.1016/S0166-8641(01)00252-8 |
[20] |
P. Salimi, A. Latif and N. Hussain, Modified $\alpha$-$\psi$-contractive mappings with applications, Fixed Point Theory and Applications, 2013, 2013(151).
$\alpha$- |
[21] | S. Shukla, S. Radenović and Z. Kadelburg, Some fixed point theorems for ordered F-generalized contractions in 0-f-orbitally complete partial metric spaces, Theory and Applications of Mathematics and Computer Science, 2014, 4(1), 87-98. |
[22] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, 2012, 2012(94). |
[23] |
D. Wardowski and N. V. Dung, Fixed points of $F$-weak contractions on complete metric spaces, Demonstratio Mathematica, 2014, 47(1), 146-155.
$F$-weak contractions on complete metric spaces" target="_blank">Google Scholar |
[24] | W. A. Wilson, On quasi-metric spaces, American Journal of Mathematics, 1931, 53(3), 675-684. doi: 10.2307/2371174 |