2019 Volume 9 Issue 3
Article Contents

Litao Zhang, Yongwei Zhou, Xianyu Zuo, Chaoqian Li, Yaotang Li. A NOTE ON BLOCK PRECONDITIONER FOR GENERALIZED SADDLE POINT MATRICES WITH HIGHLY SINGULAR (1, 1) BLOCK[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 916-927. doi: 10.11948/2156-907X.20180168
Citation: Litao Zhang, Yongwei Zhou, Xianyu Zuo, Chaoqian Li, Yaotang Li. A NOTE ON BLOCK PRECONDITIONER FOR GENERALIZED SADDLE POINT MATRICES WITH HIGHLY SINGULAR (1, 1) BLOCK[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 916-927. doi: 10.11948/2156-907X.20180168

A NOTE ON BLOCK PRECONDITIONER FOR GENERALIZED SADDLE POINT MATRICES WITH HIGHLY SINGULAR (1, 1) BLOCK

  • In this paper, we present a block triangular preconditioner for generalized saddle point matrices whose coefficient matrices have singular (1, 1) blocks. Theoretical analysis shows that all the eigenvalues of the preconditioned matrix are strongly clustered when choosing an optimal parameter. Numerical experiments are given to demonstrate the efficiency of the presented preconditioner.
    MSC: 65F10, 65F15
  • 加载中
  • [1] E. Aulisa, S. Calandrini and G. Capodaglio, FOV-equivalent block triangular preconditioners for generalized saddle-point problems, Appl. Math. Lett., 2018, 75, 43-49. doi: 10.1016/j.aml.2017.06.018

    CrossRef Google Scholar

    [2] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 2005, 14, 1-137. doi: 10.1017/S0962492904000212

    CrossRef Google Scholar

    [3] M. Benzi and J. Liu, Block preconditioning for saddle point systems with indefinite (1, 1) block, Int. J. Comput. Math., 2007, 5, 1-16.

    Google Scholar

    [4] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, IAM J. Matrix Anal. Appl., 2004, 26, 20-41. doi: 10.1137/S0895479802417106

    CrossRef Google Scholar

    [5] M. Benzi and A. J. Wathen, Some Preconditioning Techniques for Saddle Point Problems, Math. Ind., 2008, 13, 195-211. doi: 10.1007/978-3-540-78841-6

    CrossRef Google Scholar

    [6] F. Beik, M. Benzi and S. Chaparpordi, On block diagonal and block triangular iterative schemes and preconditioners for stabilized saddle point problems, J. Comput. Appl. Math., 2017, 326, 15-30. doi: 10.1016/j.cam.2017.05.009

    CrossRef Google Scholar

    [7] Z. H. Cao, A note on spectrum analysis of augmentation block preconditioned generalized saddle point matrices, J. Comput. Appl. Math., 2013, 238(15), 109-115.

    Google Scholar

    [8] Z. H. Cao, Augmentation block preconditioners for saddle point-type matrices with singular (1, 1) blocks, Numer. Linear Algebra Appl., 2008, 15, 515-533. doi: 10.1002/nla.v15:6

    CrossRef Google Scholar

    [9] S. Chaparpordi, F. Beik and D. Salkuyeh, Block triangular preconditioners for stabilized saddle point problems with nonsymmetric (1, 1)-block, Comput. Math. Appl., 2018, 76(6), 1544-1553. doi: 10.1016/j.camwa.2018.07.006

    CrossRef Google Scholar

    [10] L. B. Cui, C. Chen, W. Li and M. K. Ng, An eigenvalue problem for even order tensors with its applications, Linear Multilinear Algebra, 2016, 64, 602-621. doi: 10.1080/03081087.2015.1071311

    CrossRef Google Scholar

    [11] L. B. Cui, W. Li and M. K. Ng, Primitive Tensors and Directed Hypergraphs, Linear Algebra Appl., 2015, 471, 96-108. doi: 10.1016/j.laa.2014.12.033

    CrossRef Google Scholar

    [12] L. B. Cui, C. X. Li and S. L. Wu, The relaxation convergence of multisplitting AOR method for linear complementarity problem, Linear Multilinear Algebra. DOI: 10.1080/03081087.2018.1511680.

    CrossRef Google Scholar

    [13] L. B. Cui and Y. S. Song, On the uniqueness of the positive Z-eigenvector for nonnegative tensors, J. Comput. Appl. Math., 2019, 352, 72-78. doi: 10.1016/j.cam.2018.11.032

    CrossRef Google Scholar

    [14] C. Greif and D. Schötzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl., 2007, 14, 281-297. doi: 10.1002/(ISSN)1099-1506

    CrossRef Google Scholar

    [15] C. Greif and D. Schötzau, Preconditioners for saddle point linear systems with highly singular (1, 1) blocks, Electron. Trans. Numer. Anal., 2006, 22, 114-121.

    Google Scholar

    [16] E. Haber, U. M. Ascher and D. Oldenberg, On the optimization techniques for solving nonlinear inverse problems, Inverse Problems, 2000, 16, 1263-1280. doi: 10.1088/0266-5611/16/5/309

    CrossRef Google Scholar

    [17] A. Hadjidimos, On equivalence of optimal relaxed block iterative methods for the singular nonsymmetric saddle point problem, Linear Algebra Appl., 2017, 522, 175-202. doi: 10.1016/j.laa.2017.01.035

    CrossRef Google Scholar

    [18] T. Z. Huang, G. H. Cheng and L. Li, New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1, 1) Blocks, Math. Probl. Eng, 2009, Hindawi Publishing Corporation.

    Google Scholar

    [19] D. D. Jiang, W. J. Wang, L. Shi and H. B. Song, A compressive sensing-based approach to end-to-end network traffic reconstruction, IEEE T. Autom. Sci. Eng., 2018, online available. DOI: 10.1109/TNSE.2018.2877597

    CrossRef Google Scholar

    [20] D. D. Jiang, L. W. Huo and H. B. Song, Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis, IEEE T. Autom. Sci. Eng., 2018, 1(1), 1-12.

    Google Scholar

    [21] D. D. Jiang, L. W. Huo and Y. Li, Fine-granularity inference and estimations to network traffic for SDN, Plos One, 2018, 13(5), 1-23.

    Google Scholar

    [22] D. D. Jiang, L. W. Huo, Z. H. Lv, et al., A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking, IEEE T. Autom. Sci. Eng., 2018, 99, 1-15.

    Google Scholar

    [23] D. D. Jiang, P. Zhang, Z. H. Lv, et al., Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications, IEEE Internet Things, 2016, 3(6), 1437-1447. doi: 10.1109/JIOT.2016.2613111

    CrossRef Google Scholar

    [24] P. Lancaster and M. Tismenetsky, The Theory of Matrices, seconded. with applications, Academic Press, London, 1985.

    Google Scholar

    [25] D. Li, C. Greif and D. Schötzau, Parallel numerical solution of the time-harmonicMaxwell equations inmixed form, Numer. Linear Algebra Appl., 2012, 19, 525-539. doi: 10.1002/nla.v19.3

    CrossRef Google Scholar

    [26] T. Rees and C. Greif, A preconditioner for linear systems arising from interior optimization methods, SIAM J. Sci. Comput., 2007, 29, 1992-2007. doi: 10.1137/060661673

    CrossRef Google Scholar

    [27] D. Salkuyeh and M. Rahimian, A modification of the generalized shift-splitting method for singular saddle point problems, Comput. Math. Appl., 2017, 74(12), 2940-2949. doi: 10.1016/j.camwa.2017.07.029

    CrossRef Google Scholar

    [28] C. Siefert and E. D. Sturler, Preconditioners for Generalized Saddle-Point Problems, SIAM J. Numer. Anal., 2006, 44(3), 1275-1296. doi: 10.1137/040610908

    CrossRef Google Scholar

    [29] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar

    [30] L. T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1, 1) blocks, Int. J. Comput. Math., 2014, 91(9), 2091-2101. doi: 10.1080/00207160.2013.867953

    CrossRef Google Scholar

Figures(7)  /  Tables(4)

Article Metrics

Article views(3147) PDF downloads(645) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint