[1]
|
E. Aulisa, S. Calandrini and G. Capodaglio, FOV-equivalent block triangular preconditioners for generalized saddle-point problems, Appl. Math. Lett., 2018, 75, 43-49. doi: 10.1016/j.aml.2017.06.018
CrossRef Google Scholar
|
[2]
|
M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 2005, 14, 1-137. doi: 10.1017/S0962492904000212
CrossRef Google Scholar
|
[3]
|
M. Benzi and J. Liu, Block preconditioning for saddle point systems with indefinite (1, 1) block, Int. J. Comput. Math., 2007, 5, 1-16.
Google Scholar
|
[4]
|
M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, IAM J. Matrix Anal. Appl., 2004, 26, 20-41. doi: 10.1137/S0895479802417106
CrossRef Google Scholar
|
[5]
|
M. Benzi and A. J. Wathen, Some Preconditioning Techniques for Saddle Point Problems, Math. Ind., 2008, 13, 195-211. doi: 10.1007/978-3-540-78841-6
CrossRef Google Scholar
|
[6]
|
F. Beik, M. Benzi and S. Chaparpordi, On block diagonal and block triangular iterative schemes and preconditioners for stabilized saddle point problems, J. Comput. Appl. Math., 2017, 326, 15-30. doi: 10.1016/j.cam.2017.05.009
CrossRef Google Scholar
|
[7]
|
Z. H. Cao, A note on spectrum analysis of augmentation block preconditioned generalized saddle point matrices, J. Comput. Appl. Math., 2013, 238(15), 109-115.
Google Scholar
|
[8]
|
Z. H. Cao, Augmentation block preconditioners for saddle point-type matrices with singular (1, 1) blocks, Numer. Linear Algebra Appl., 2008, 15, 515-533. doi: 10.1002/nla.v15:6
CrossRef Google Scholar
|
[9]
|
S. Chaparpordi, F. Beik and D. Salkuyeh, Block triangular preconditioners for stabilized saddle point problems with nonsymmetric (1, 1)-block, Comput. Math. Appl., 2018, 76(6), 1544-1553. doi: 10.1016/j.camwa.2018.07.006
CrossRef Google Scholar
|
[10]
|
L. B. Cui, C. Chen, W. Li and M. K. Ng, An eigenvalue problem for even order tensors with its applications, Linear Multilinear Algebra, 2016, 64, 602-621. doi: 10.1080/03081087.2015.1071311
CrossRef Google Scholar
|
[11]
|
L. B. Cui, W. Li and M. K. Ng, Primitive Tensors and Directed Hypergraphs, Linear Algebra Appl., 2015, 471, 96-108. doi: 10.1016/j.laa.2014.12.033
CrossRef Google Scholar
|
[12]
|
L. B. Cui, C. X. Li and S. L. Wu, The relaxation convergence of multisplitting AOR method for linear complementarity problem, Linear Multilinear Algebra. DOI: 10.1080/03081087.2018.1511680.
CrossRef Google Scholar
|
[13]
|
L. B. Cui and Y. S. Song, On the uniqueness of the positive Z-eigenvector for nonnegative tensors, J. Comput. Appl. Math., 2019, 352, 72-78. doi: 10.1016/j.cam.2018.11.032
CrossRef Google Scholar
|
[14]
|
C. Greif and D. Schötzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl., 2007, 14, 281-297. doi: 10.1002/(ISSN)1099-1506
CrossRef Google Scholar
|
[15]
|
C. Greif and D. Schötzau, Preconditioners for saddle point linear systems with highly singular (1, 1) blocks, Electron. Trans. Numer. Anal., 2006, 22, 114-121.
Google Scholar
|
[16]
|
E. Haber, U. M. Ascher and D. Oldenberg, On the optimization techniques for solving nonlinear inverse problems, Inverse Problems, 2000, 16, 1263-1280. doi: 10.1088/0266-5611/16/5/309
CrossRef Google Scholar
|
[17]
|
A. Hadjidimos, On equivalence of optimal relaxed block iterative methods for the singular nonsymmetric saddle point problem, Linear Algebra Appl., 2017, 522, 175-202. doi: 10.1016/j.laa.2017.01.035
CrossRef Google Scholar
|
[18]
|
T. Z. Huang, G. H. Cheng and L. Li, New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1, 1) Blocks, Math. Probl. Eng, 2009, Hindawi Publishing Corporation.
Google Scholar
|
[19]
|
D. D. Jiang, W. J. Wang, L. Shi and H. B. Song, A compressive sensing-based approach to end-to-end network traffic reconstruction, IEEE T. Autom. Sci. Eng., 2018, online available. DOI: 10.1109/TNSE.2018.2877597
CrossRef Google Scholar
|
[20]
|
D. D. Jiang, L. W. Huo and H. B. Song, Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis, IEEE T. Autom. Sci. Eng., 2018, 1(1), 1-12.
Google Scholar
|
[21]
|
D. D. Jiang, L. W. Huo and Y. Li, Fine-granularity inference and estimations to network traffic for SDN, Plos One, 2018, 13(5), 1-23.
Google Scholar
|
[22]
|
D. D. Jiang, L. W. Huo, Z. H. Lv, et al., A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking, IEEE T. Autom. Sci. Eng., 2018, 99, 1-15.
Google Scholar
|
[23]
|
D. D. Jiang, P. Zhang, Z. H. Lv, et al., Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications, IEEE Internet Things, 2016, 3(6), 1437-1447. doi: 10.1109/JIOT.2016.2613111
CrossRef Google Scholar
|
[24]
|
P. Lancaster and M. Tismenetsky, The Theory of Matrices, seconded. with applications, Academic Press, London, 1985.
Google Scholar
|
[25]
|
D. Li, C. Greif and D. Schötzau, Parallel numerical solution of the time-harmonicMaxwell equations inmixed form, Numer. Linear Algebra Appl., 2012, 19, 525-539. doi: 10.1002/nla.v19.3
CrossRef Google Scholar
|
[26]
|
T. Rees and C. Greif, A preconditioner for linear systems arising from interior optimization methods, SIAM J. Sci. Comput., 2007, 29, 1992-2007. doi: 10.1137/060661673
CrossRef Google Scholar
|
[27]
|
D. Salkuyeh and M. Rahimian, A modification of the generalized shift-splitting method for singular saddle point problems, Comput. Math. Appl., 2017, 74(12), 2940-2949. doi: 10.1016/j.camwa.2017.07.029
CrossRef Google Scholar
|
[28]
|
C. Siefert and E. D. Sturler, Preconditioners for Generalized Saddle-Point Problems, SIAM J. Numer. Anal., 2006, 44(3), 1275-1296. doi: 10.1137/040610908
CrossRef Google Scholar
|
[29]
|
H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2003.
Google Scholar
|
[30]
|
L. T. Zhang, A new preconditioner for generalized saddle matrices with highly singular (1, 1) blocks, Int. J. Comput. Math., 2014, 91(9), 2091-2101. doi: 10.1080/00207160.2013.867953
CrossRef Google Scholar
|