2019 Volume 9 Issue 3
Article Contents

Conghui Xu, Yongguang Yu. STABILITY ANALYSIS OF TIME DELAYED FRACTIONAL ORDER PREDATOR-PREY SYSTEM WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 928-942. doi: 10.11948/2156-907X.20180175
Citation: Conghui Xu, Yongguang Yu. STABILITY ANALYSIS OF TIME DELAYED FRACTIONAL ORDER PREDATOR-PREY SYSTEM WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 928-942. doi: 10.11948/2156-907X.20180175

STABILITY ANALYSIS OF TIME DELAYED FRACTIONAL ORDER PREDATOR-PREY SYSTEM WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE

  • Corresponding author: Email address: ygyu@bjtu.edu.cn (Y. Yu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 61772063)
  • In this paper, we present a fractional order predator-prey system with Crowley-Martin functional response. Firstly, we analyze the asymptotic stability of the system. At the same time, some sufficient conditions for the stability of the system are given. Then, we investigate the stability of the corresponding system with time delay and also discuss some sufficient conditions for the equilibrium stability of the system with time delay. In the end, the numerical simulations illustrate the accuracy of our conclusions.
    MSC: 34D20, 92D25
  • 加载中
  • [1] E. Ahmed, A. M. A. EI-Sayed and H. A. A. EI-Saka, Equilibrium points stability and numerical solutions of fractional-order predator-prey and rabies models, Journal of Mathematical Analysis and Applications, 2007, 325(1), 542-553. doi: 10.1016/j.jmaa.2006.01.087

    CrossRef Google Scholar

    [2] Y. Z. Bai and X. P. Zhang, Stability and Hopf Bifurcation in a diffusive predator-prey System with Beddington-DeAngelis functional response and time delay, Abstract Applied Analysis, 2011(2011), ID 463721.

    Google Scholar

    [3] A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 1992, 73(5), 1530-1535. doi: 10.2307/1940005

    CrossRef Google Scholar

    [4] R. Chinnathambi and F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dynamics, 2018, 92(4), 1637-1648. doi: 10.1007/s11071-018-4151-z

    CrossRef Google Scholar

    [5] W. H. Deng, C. P. Li and J. H. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 2007, 48(4), 409-406. doi: 10.1007/s11071-006-9094-0

    CrossRef Google Scholar

    [6] J. W. Jia, Persistence and periodic solutions for a nonautonomous predator-prey system with type Ⅲ functional response, Journal of Biomathematics, 2001, 16(1), 59-62.

    Google Scholar

    [7] Z. J. Liu and S. M. Zhong, An impulsive periodic predator-prey system with Holling type Ⅲ functional response and diffusion, Applied Mathematical Modelling, 2012, 36(12), 5976-5990. doi: 10.1016/j.apm.2012.01.032

    CrossRef Google Scholar

    [8] D. Mukherjee, Persistence and bifurcation analysis on a predator-prey system of Holling type, Esaim Mathematical Modelling and Numerical Analysis, 2003, 37(2), 339-344. doi: 10.1051/m2an:2003029

    CrossRef Google Scholar

    [9] D. Matignon, Stability result on fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, 1996, 2, 963-968.

    Google Scholar

    [10] P. Morin and C. Samson, Control of nonlinear chained systems: From the routh-hurwitz stability criterion to time-varying exponential stabilizers, IEEE Transactions on Automatic Control, 2000, 45(1), 141-146. doi: 10.1109/9.827372

    CrossRef Google Scholar

    [11] I. Podlubny, Fractional Differential Equations: An Introduction to fractional derivatives, Fractional differential equations, to methods of their solution and some of their applications, first ed. Academic Press, California, 1998.

    Google Scholar

    [12] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [13] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan and E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dynamics, 2015, 80(1-2), 777-789. doi: 10.1007/s11071-015-1905-8

    CrossRef Google Scholar

    [14] X. Y. Shi, X. Y. Zhou and X. Y. Song, Analysis of a stage-staturcted predator-prey model with Crowley-Martin function, Journal of Applied Mathematics and Computing, 2011, 36(1-2), 459-472. doi: 10.1007/s12190-010-0413-8

    CrossRef Google Scholar

    [15] G. T. Sklaski and J. F. Gilliam, Functional responses with predator interference: viable alternative to Holling type Ⅱ model, Ecology, 2001, 82(11), 3083-3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    CrossRef Google Scholar

    [16] P. Song, H. Y. Zhao and X. B. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theory in Biosciences, 2016, 135(1-2), 59-72. doi: 10.1007/s12064-016-0223-0

    CrossRef Google Scholar

    [17] Y. F. Shao, B. X. Dai and Z. G. Luo, The dynamics of an impulsive one-prey multi-predators system with delay and Holling-type Ⅱ functional response, Applied Mathematics and Computation, 2010, 217(6), 2414-2424. doi: 10.1016/j.amc.2010.07.042

    CrossRef Google Scholar

    [18] G. Tang, S. Tang and R. A. Cheke, Global analysis of a Holling type Ⅱ predator-prey model with a constant prey refuge, Nonlinear Dynamics, 2014, 76(1), 635-647. doi: 10.1007/s11071-013-1157-4

    CrossRef Google Scholar

    [19] J. P. Tripathi, S. Abbas amd M. Thakur, Dynamic analysis of a prey-predator model with Beddington-Deangelis type function response incorporating a prey reguge, Nomlinear Dynamic, 2015, 80(1-2), 1-20. doi: 10.1007/s11071-014-1321-5

    CrossRef Google Scholar

    [20] J. P. Tripathi, S. Tyagi and S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1-3), 45-69. doi: 10.1016/j.cnsns.2015.06.008

    CrossRef Google Scholar

    [21] F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 2016, 40(1), 126-134. doi: 10.1016/j.apm.2015.04.042

    CrossRef Google Scholar

    [22] X. S. Wang, A simple proof of Descartes's rule of signs, The American Mathematical Monthly, 2004, 111(6), 525-526. doi: 10.1080/00029890.2004.11920108

    CrossRef Google Scholar

    [23] H. Wang, Y. G. Yu, G. G. Wen and S. Zhang, Stability analysis of fractional-order neural networks with time delay, Neural Processing Letters, 2015, 42(2), 479-500. doi: 10.1007/s11063-014-9368-3

    CrossRef Google Scholar

    [24] H. Wang, Dynamical analysis of fractional-order Hopfield neural networks with time delays, Beijing, PHD thesis of Beijing Jiaotong University(in Chinese), 2015.

    Google Scholar

    [25] J. Zhou and C. Mu, Coexistence states of a Holling type Ⅱ predator-prey system, Journal of Mathematical Analysis and Applications, 2010, 369(2), 555-563. doi: 10.1016/j.jmaa.2010.04.001

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(3011) PDF downloads(957) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint