[1]
|
A. Buică, J. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Comm. Pure Appl. Anal., 2006, 6, 103-111. doi: 10.3934/cpaa
CrossRef Google Scholar
|
[2]
|
J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst., 1999, 1, 1-70. doi: 10.1007/BF02969404
CrossRef Google Scholar
|
[3]
|
R. Conti, Uniformly isochronous centers of polynomial systems in ℝ2, Lect. Notes Pure Appl. Math., 1994, 152, 21-31.
Google Scholar
|
[4]
|
R. Conti, Centers of planar polynomial systems. A review, Le Matematiche, 1998, 53, 207-240.
Google Scholar
|
[5]
|
F. Dias and L. Mello, The center-focus problem and small amplitude limit cycles in rigid systems, Disc. Contin. Dyn. Sys., 2012, 32, 1627-1637. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[6]
|
A. Gasull, R. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 2005, 303, 391-404.
Google Scholar
|
[7]
|
S. Gautier, L. Gavrilov and I. Iliev, Perturbations of quadratic center of genus one, Disc. Contin. Dyn. Sys., 2009, 25, 511-535. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[8]
|
J. Giné, M. Grau and J. Llibre, Limit cycles bifurcating from plannar polynomial quasi-homogeneous centers, J. Differ. Equ., 2015, 259, 7135-7160. doi: 10.1016/j.jde.2015.08.014
CrossRef Google Scholar
|
[9]
|
M. Han and J. Li, Lower bounds for the Hilbert number of polynomial systems, J. Differ. Equ., 2012, 252, 3278-3304. doi: 10.1016/j.jde.2011.11.024
CrossRef Google Scholar
|
[10]
|
M. Han, V. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst., 2016, 15, 371-479.
Google Scholar
|
[11]
|
D. Hilbert, Mathematical problems, (M. Newton, Transl.) Bull. Amer. Math., 1902, 8, 437-479.
Google Scholar
|
[12]
|
B. Huang, Bifurcation of limit cycles from the center of a quintic system via the averaging method, Int. J. Bifur. Chaos, 2017, 27, 1750072-1-16.
Google Scholar
|
[13]
|
Y. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. (New Series) Am. Math. Soc., 2002, 39, 301-354. doi: 10.1090/S0273-0979-02-00946-1
CrossRef Google Scholar
|
[14]
|
J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comput. Appl. Math., 2015, 287, 98-114. doi: 10.1016/j.cam.2015.02.046
CrossRef Google Scholar
|
[15]
|
C. Li, W. Li, J. Llibre and Z. Zhang, Linear estimate of the number of zeros of Abelian integrals for some cubic isochronous centers, J. Differ. Equ., 2002, 180, 307-333. doi: 10.1006/jdeq.2001.4064
CrossRef Google Scholar
|
[16]
|
S. Li and Y. Zhao, Limit cycles of perturbed cubic isochronous center via the second order averaging method, Int. J. Bifur. Chaos, 2014, 24, 1450035-1-8.
Google Scholar
|
[17]
|
H. Liang, J. Llibre and J. Torregrosa, Limit cycles coming from some uniform isochronous centers, Adv. Nonlinear Stud., 2016, 16, 197-220.
Google Scholar
|
[18]
|
J. Llibre and J. Itikawa, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comput. Appl. Math., 2015, 277, 171-191. doi: 10.1016/j.cam.2014.09.007
CrossRef Google Scholar
|
[19]
|
J. Llibre, R. Ramírez and N. Sadovskaia, On the 16th Hilbert problem for algebraic limit cycles, J. Differ. Equ., 2010, 248, 1401-1409. doi: 10.1016/j.jde.2009.11.023
CrossRef Google Scholar
|
[20]
|
J. Llibre, R. Ramírez and N. Sadovskaia, On the 16th Hilbert problem for limit cycles on nonsingular algebraic curves, J. Differ. Equ., 2011, 250, 983-999. doi: 10.1016/j.jde.2010.06.009
CrossRef Google Scholar
|
[21]
|
J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields, Discr. Contin. Dyn. Syst., 2011, 18, 203-214.
Google Scholar
|
[22]
|
I. Malkin, Some problems of the theory of nonlinear oscillations (in Russian), Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow, 1956.
Google Scholar
|
[23]
|
L. Peng and Z. Feng, Bifurcation of limit cycles from quartic isochronous systems, Electron. J. Differ. Equations, 2014, 95, 1-14.
Google Scholar
|
[24]
|
L. Peng and Z. Feng, Bifurcation of limit cycles from a quintic center via the second order averaging method, Int. J. Bifur. Chaos, 2015, 25, 1550047-1-18.
Google Scholar
|
[25]
|
L. Peng and Z. Feng, Limit cycles from a cubic reversible system via the thirdorder averaging method, Electron. J. Differ. Equations, 2015, 111, 1-27.
Google Scholar
|
[26]
|
L. Peng and B. Huang, Second-order bifurcation of limit cycles from a quadratic reversible center, Electron. J. Differ. Equations, 2017, 89, 1-17.
Google Scholar
|
[27]
|
M. Roseau, Vibrations non linéaires et théorie de la stabilité, Springer, New York, 1985.
Google Scholar
|
[28]
|
J. Sanders, F. Verhulst and J. Murdock, Averaging method in nonlinear dynamical systems, Springer-Verlag, New York, 2007.
Google Scholar
|
[29]
|
F. Verhulst, Nonlinear differential equations and dynamical Systems, SpringerVerlag, Berlin, 1996.
Google Scholar
|
[30]
|
D. Wang, Mechanical manipulation for a class of differential systems, J. Symb. Comput., 1991, 12, 233-254. doi: 10.1016/S0747-7171(08)80127-7
CrossRef Google Scholar
|
[31]
|
Y. Zhao, On the number of limit cycles in quadratic perturbations of quadratic codimension-four centers, Nonlin. Anal., 2011, 24, 2505-2522.
Google Scholar
|